
Efficient Debugging with Slicing and Backtracking�

SERC-TR-80-P

Hiralal Agrawal
Richard A. DeMillo
Eugene H. Spafford

Software Engineering Research Center
Department of Computer Sciences

Purdue University
W. Lafayette, IN 47907-2004

Abstract

Programmers spend considerable time debugging code. Several tools are available to help them in
this task, varying from hexadecimal dumps of program state to window- and mouse-based interactive
debuggers, but the task still remains complex and difficult. Most of these conventional debuggers provide
breakpoints and traces as their main debugging aids. These features have changed little in the past 15–20
years despite the increased complexity of software systems on which debuggers are used.

In this paper we present a prototype tool that enables users to follow their “natural” thought process
while debugging. It combines dynamic program slicing and execution backtracking techniques in a novel
way. With the help of this powerful combination, program bugs may be localized and removed very
quickly. Examples are given to show how our debugger may be used, and how it relates to other research
in the area.

Keywords: program debugging, execution backtracking, reverse program execution, program slic-
ing, dynamic program slicing

1 Introduction

The importance of good debugging tools cannot be overemphasized. Average programmers may spend
considerable amounts (possibly more than 50%) of their program development time debugging. Several
tools are available to help them in this task [AS89, MH89], varying from hexadecimal dumps of program
state at the time of failure to window- and mouse-based interactive debuggers using bit-mapped displays
[AM86, Car86]. Most interactive debuggers provide breakpoints and traces as their main debugging aids

�This paper has been submitted to Software—Practice & Experience.
This work was funded by a grant from the Purdue University/University of Florida Software Engineering Research Center

(SERC), and by National Science Foundation grant 8910306-CCR.

1



[Kat79, MB79, Dun86, Wei82]. Unfortunately, these traditional mechanisms are often inadequate for the
task of isolating specific program faults.

In this paper we present the results of our preliminary experiment in integrating new approaches to
software fault localization with conventional debugging techniques. This experiment has resulted in a novel,
easy-to-use, interactive, window-based debugger that supports new methods of execution backtracking and
static- and dynamic program slicing along with conventional techniques. We believe these mechanisms are
significant additions to the mechanisms already used by programmers, and provide a natural approach to
isolating and identifying software faults (“bugs”).

How Does One Debug?

Given that a program has failed to produce the desired output, how does one go about finding where it went
wrong? Other than the program source, the only important information usually available to the programmer
is the input data and the erroneous output produced by the program. If the program is sufficiently simple,
it can be analyzed manually on the given input. However, for many programs, especially lengthy ones,
such analysis is much too difficult to perform. One logical way to proceed in such situations would
be to think backwards—deduce the conditions under which the program produces the incorrect output
[Sch71, Gou74, Luk80].

Consider, for example, the program in the main window panel of Figure 1.1 This program computes
the sum of the areas of N triangles. It reads the value of N , followed by the lengths of the three sides of
each of these N triangles. From these values, it classifies each triangle as an equilateral, isosceles, right,
or a scalene triangle. Then it computes the area of the triangle using an appropriate formula. Finally, the
program prints the sum of the areas.

There is a bug in the displayed program. The C code at line 26 is doing a comparison, but the second
comparison has been mistyped as using a = symbol instead of a == symbol. This is a common error when
programming in C, and results in an assignment rather than a non-destructive comparison.

Suppose this program is executed for the testcase2 when N = 2 and sides of the two triangles are
(5, 4, 3) and (4, 4, 2) respectively.3 If the final sum of areas printed is incorrect, how should we go about
locating the bug in the program? Looking backwards from the printf statement on line 46, we find there
are several possibilities: sum is not being updated properly; one or more of the formulas for computing the
area of a triangle are incorrect; the triangle is being classified incorrectly; or the values for the three sides of
the triangle are not being read correctly.

The statement on line 43 adds area to sum, so the first thing we may want to do is examine the state of
the program at that point. We can set a breakpoint at that line and reexecute the program up to that statement
to examine the values of variables sum and area at that point.

Suppose we find that the area is computed correctly during the first loop iteration, but is computed
incorrectly during the second iteration. To discover why, we might wish to examine the value of class
for the second triangle to determine which formula for computing its area was used. If we find class to
be incorrect, we can examine the values of the three sides of the triangle to check if they are being read

1The figures are X Window System window dumps of our debugging tool in operation.
2A testcase consists of a specific set of runtime input values.
3We will refer to this testcase as testcase #1 in later sections.

2



Figure 1: Tool screen with a sample C source program

correctly. If so, we should examine the statements on lines 23–32 that determine the class of the triangle.

There are three distinct tasks we performed in this analysis:

1. determining which statements in the code had an influence on the value of sum at line 46

2. selecting one (or more) of these statements at which to examine the program state

3. restoring or recreating the program state at those statements to examine specific variables

3



In this example, we performed the first two tasks ourselves by examining the code, without any assistance
from the debugger. For the third task we had to set a breakpoint and reexecute the code until the control
stopped at the breakpoint. Our debugging job would become much easier if the debugger provided direct
assistance in performing all three of these tasks.

We have built a prototype debugger that provides the user with exactly this assistance. The first
task—given a variable and a program location, determining which statements in the program affected the
value of that variable at that location when the program is executed for a given testcase—is referred to as
Dynamic Program Slicing [AH90]. Our debugger can find dynamic slices for us automatically. It can also
restore the program state at any desired location by backtracking the program execution without having to
reexecute the program from the beginning [AS88]. In this paper we discuss these two functions—slicing
and backtracking—of our prototype debugging tool.

In the next section we discuss the notion of program slicing. In Section 3 we examine the usefulness of
an execution backtracking facility in a debugging tool. Then in Section 4 we present an example debugging
session with our tool using both slicing and backtracking facilities. In Section 5 we briefly discuss some
implementation issues. Finally, in Section 6, we outline related work.

2 Program Slicing

Program Slicing is finding all those statements in a program that directly or indirectly affect the value of a
given variable occurrence in the program [Wei84]. The statements that affect the value constitute the slice
of the program with respect to the given variable occurrence (variable name and statement location). A
slice has a simple meaning: it should evaluate the variable occurrence identically to the original program
for all testcases. As the slices so obtained are independent of any runtime input values, they are referred to
as static program slices.

For example, Figure 2 shows a static slice with respect to variable area on line 43. Statements that
belong to the slice are shown in reverse “video.” Note that lines 23–32 that compute class of the triangle
are in the slice because the value of class is used in determining which formula is used in computing area
in lines 34–42. Alternatively, if we needed the slice for the variable class on line 34, lines 34–42 are not
included in the slice, because the value of area computed during one iteration does not affect the value of
class during subsequent iterations. This is shown in Figure 3.

As we mentioned above, a static slice includes all statements that could influence the value of a variable
occurrence for all possible inputs to the program. In debugging, however, we are concerned with examining
the program behavior for a particular input that revealed the bug. For example, consider again the program
in Figure 1 for testcase #1. If we find that the value of area is incorrect at the statement on line 43 for
the second triangle (i.e., during the second loop iteration), we would like to know which statements in the
program had an effect on the current value of area for the current testcase. The static slice for area at
that location will include all three assignments to area on lines 35, 37, and 40 (along with several other
statements), as shown in Figure 2, even though only one of these affects the current value of area.

The problem of finding all statements that influence the value of a variable occurrence for a given
testcase is referred to as Dynamic Program Slicing. The particular test-case that exercises the bug helps us
focus our attention to only that “cross-section” of the program that contains the bug.4

4When we say the slice contains the bug, we do not necessarily mean that the bug is textually contained in the slice; the bug

4



Figure 2: Static slice with respect to variable area on line 43

Figure 4 shows the dynamic slice for the variable area at line 43 during the second loop iteration
for testcase #1. Note that only the assignment to area on line 37 is in this dynamic slice. Although the
assignment on line 35 is executed during the first iteration, it is not included in the slice because the value
of area computed during the first iteration does not affect in any way its value during the second iteration.

could correspond to the absence of something from the slice—a missing if statement, a statement outside the slice that should have
been inside it, etc. We can discover that something is missing from the slice only after we have found the slice. In this sense, the
bug still “lies in the slice.”

5



Figure 3: Static slice with respect to variable class on line 34

Similarly statements on lines 23, 24, and 25 that compute a sqr, b sqr, and c sqr do not belong to the
dynamic slice although they are executed during the second iteration; the values they compute do not affect
the value of area in this case—their values are not even used during the second iteration.

The power of dynamic slicing becomes more apparent when the program being debugged has pointers.
Consider, for example, the simple program in Figure 5. It initializes all elements of an array a and then
prompts the user for values of i, j, and k. It increments the ith, jth and kth elements of the array and prints out

6



Figure 4: Dynamic slice with respect to variable area on line 43 during the second iteration of the enclosing
while loop for the testcase #1.

the new values of these elements. p, q, and r are three pointer variables that point to the ith, jth and the kth
elements of the array a respectively. Consider the testcase when this program is executed with input values
(i = 3; j = 6; k = 6). Figure 5 also shows the static slice with respect to a[i] on line 29. Figure 6 shows
the corresponding dynamic slice. Note that the static slice contains all three indirect assignments through
pointers on lines 25–27 because all three pointers, p, q, and r, can possibly be pointing at a[i]. This in turn
requires that the three assignments on lines 21–23, the scanf statement on line 19, and all assignments on

7



Figure 5: Static slice with respect to a[i] on line 29.

lines 7–16 also be included in the slice. The dynamic slice, on the other hand, contains only one indirect
assignment through p on line 25 because, during the current testcase, q and r do not point at a[i]. This
means, of the three assignments on lines 21–23, only the assignment to p on line 21 is included in the
dynamic slice. Similarly, of all assignments on lines 7–16, only the assignment to the ith array element5

is in the slice; assignments to all other elements of the array do not belong to the slice. If we obtain the
dynamic slice for a[j] on line 29, both indirect assignments on lines 26 and 27 are in the dynamic slice, as
shown in Figure 7. This is because, for the current testcase, values of j and k are equal, making both q and
r as aliases to the same array element a[6].

As is apparent from Figures 2–7, our debugging tool provides both static and dynamic slicing capabilities.
The relevant variable occurrence in the source window is selected by dragging the cursor over it. Then the
button labeled data slice is clicked to obtain the corresponding slice. The data slice obtained is a static,
approximate dynamic (explained below), or exact dynamic slice based on which of the corresponding toggle
buttons is currently selected. In the case of a dynamic slice, the slice is obtained with respect to the execution
history thus far. If the program is stopped at a breakpoint, the dynamic slice obtained involves only the

5a[3] in this case

8



Figure 6: Dynamic slice with respect to a[i] on line 29.

dynamic dependencies that have occurred during the program execution so far.

We used the term data slice above because the slice was defined with respect to a data value—a variable
occurrence. Sometimes, a program bug is revealed when a wrong section of the program is executed. This
may become evident, for example, when a printf statement in that section is executed—no erroneous data
values are involved. In such cases, we may define a program slice simply with respect to control reaching a
certain program location. Such slices are obtained by selecting any characters on the relevant source line,
and clicking on the button labeled control slice.6

Approximate Dynamic Slicing

Frequently, obtaining a static slice may be sufficient to allow the user to localize a program bug. In such
situations, the overhead of obtaining dynamic slices is clearly unnecessary. In other situations, especially

6Both Data and Control slices are obtained by following data as well as control dependencies in the program. The difference is
only in the starting criterion—the former is defined with respect to a variable as well as a statement location, the latter is defined
with respect to only a statement location.

9



Figure 7: Dynamic slice with respect to a[j] on line 29.

when programs use data structures involving pointers, the sizes of static slices may approach that of the
original program. In these situations, dynamic slices become extremely valuable. We also have a facility
to provide approximate dynamic slices, which are computationally less expensive to obtain as compared to
exact dynamic slices, but may be unnecessarily large compared to them. An approximate dynamic slice is
obtained by taking the intersection of the appropriate static slice with the program execution path for the
current testcase (all statements that are executed during the current test case).7 Consider again, for example,
the program in Figure 1 and the testcase #1. Figure 8 shows the approximate dynamic slice with respect
to area on line 43 when the execution reaches there during the first loop iteration. The approximate slice
obtained in this case is exactly the same as the corresponding exact dynamic slice. Figure 9 shows the
approximate dynamic slice for the same variable occurrence but during the second loop iteration. Compare
this with the corresponding exact dynamic slice shown in Figure 4 and the corresponding static slice shown
in Figure 2.

It is up to the user to judiciously select the slicing criterion—static, dynamic, or approximate dynamic—

7Actually, the intersection is performed by doing the static slicing analysis only over the nodes in the program dependence graph
that are visited during the program execution. See [AH90] for details.

10



Figure 8: Approximate dynamic slice on area on line 43, first iteration.

that best suits his needs. The three alternatives provide a span of space-time-accuracy trade-offs. The
selection may also be changed during the debugging session. Thus, it is possible to start with less expensive
static analysis and identify a smaller program region that most likely contains the bug, and then use the more
expensive dynamic analysis only within that small region. The reader is referred to [AH90] for a detailed
discussion on these approaches to computing program slices and their relative costs.

11



Figure 9: Approximate dynamic slice on area on line 43, second iteration.

Reaching Definitions

In some situations, looking at the whole slice at once may be overwhelming. In these situations, it may
be useful to analyze the inter-statement program dependencies one at a time. For this reason, our tool
also provides a function to show only the direct reaching definitions of any variable occurrence. If static
analysis is currently selected, all possible reaching definitions are highlighted. If exact dynamic analysis
is selected, the unique reaching definition of the variable occurrence for the current testcase is highlighted.

12



Figure 10: Static reaching definitions of variable area on line 43

For example, Figure 10 shows the static reaching definitions of variable area at line 43. Figure 11 shows
the unique dynamic reaching definition for the same variable occurrence during the second iteration of the
enclosing while loop for testcase #1.

13



Figure 11: Dynamic reaching definitions of variable area on line 43

Handling Multiple Testcases

After a program is written, it is normally run against several input data sets designed to test specific aspects
of the program behavior. If a program works correctly on one testcase but fails on another, it may be helpful
to analyze the program behavior under both these testcases. The inclusion or exclusion of a statement in
dynamic slices with respect to the two testcases may provide valuable debugging clues. The same idea may
be generalized to that of examining dynamic program behavior under several testcases.

14



Our tool allows the user to save several testcases and then select any one for dynamic analysis. The
current testcase selection may be changed at any time. Performing any dynamic analysis (either exact
or approximate) requires that a valid testcase be currently selected. The testcase selection is performed
by clicking on the button labeled new testcase. When this button is clicked, a dialogue window pops up
prompting the user to specify which testcase to use. The specified testcase becomes the current testcase and
remains so until a new testcase is selected.

3 Execution Backtracking

When debugging using conventional debuggers, one often needs to reexecute the program being debugged
from the start. For example, when the program execution is suspended at a breakpoint, after examining
some variable values we may discover that the error occurred at an earlier location. We may then decide to
set another breakpoint at an earlier program statement and restart the program. When the execution stops
at this new breakpoint, we may reexamine the program state. We may have to repeat this process of setting
breakpoints in backward order and reexecuting the program several times. For large programs such repeated
execution from the beginning may be very cumbersome.

Our debugging tool provides an execution backtracking facility with which program state can be restored
at any desired earlier location without having to reexecute the entire program. Just as the normal forward
program execution is suspended whenever a breakpoint is encountered, our tool can “execute” the program
in the reverse direction and continue executing backwards until a breakpoint is reached. This way, when
stopped at a breakpoint, if we find that the error occurred at an earlier location and we wish to examine the
program state at that location, we simply need to set another breakpoint there and execute backwards. When
the backward execution stops at that breakpoint, the tool will have restored the program state to whatever
it was when the execution last reached that point. Backward execution is started simply by clicking on the
button labeled backup. The button labeled continue restores the program execution in the normal forward
direction.

For example, consider again the program in Figure 1 and testcase #1. If the program execution is
stopped at line 46, and we discover that the value of sum is incorrect there, we may set a breakpoint on
line 43 and start backward execution. The loop was iterated two times for this testcase, so the second
iteration will be reached first during backward execution. When this execution stops at line 43, the program
state will be exactly the same as if the execution had stopped there during normal execution during the
second iteration of the loop. If we examine the value of sum there, we will get its value just before the
last assignment was executed (see Figure 13). If we find this previous value of sum to be correct, we may
conclude that it is the current value of area that is incorrect. If we wanted to backup to the same location
during the previous iteration, we simply need to continue our backward execution from there on. As no
other breakpoint is encountered during the same iteration, the backward execution is again suspended when
it reaches the breakpoint at line 44 during the previous iteration.

Figure 12 shows another example of backtracking. The bottom output window shows the tool output
for a sequence of debugging commands. After we select a testcase, the program execution is automatically
stopped before the first executable statement (on line 7, in this case). If we examine the value of array a at
this time (by selecting the variable a anywhere in the source window and clicking on the print button), we
find that all elements 0–9 of a have the value 0. We now set a breakpoint on line 16 (by selecting line 16
and clicking on the stop button) and continue the program execution (by clicking on the continue button).

15



The execution stops when the breakpoint on line 16 is reached. We again examine the value of array a
and find, as expected, that elements 0–8 of the array have values 0–8 respectively but element 9 still has
zero because the execution stopped just before the assignment on line 16 is executed. We may now set a
breakpoint on line 12 and start reverse execution by clicking on the button labeled backup. The reverse
execution stops upon encountering the breakpoint after backing over the statement on line 12. If we now
examine the value of array a we notice that elements 5–8 have their values restored to zero. If we continue
the reverse execution (by clicking again on the backup button) the execution stops upon reaching the start
of the program on line 7. Now the value of each element of the array is restored back to zero, their initial
value. If we continue the program execution in the forward direction from here, it will again stop at the
breakpoint on line 12. The values of elements 0–4 will now again be 0–4 respectively, while those of 5–9
will still be zero.

Back-Stepping

Most conventional debuggers provide facilities to step through the program execution one line at a time.
While debugging we often “think backwards” from the location where a bug is manifested, so it would be
helpful if the debugger also lets the user step back through the program execution, statement by statement.
Our debugging tool provides such a back-stepping facility. When execution is stopped at a breakpoint,
clicking on the button labeled stepback will undo the effect of the last statement executed before the
program stopped at the current breakpoint. Clicking one more time on the same button undoes the effect of
the last statement before that, and so on. Note that the statement next to be executed (the current statement)
is indicated by the arrow in the left margin of the code window (see, e.g., Figure 13).

4 An Example Debugging Session

Let us illustrate our system by presenting a small debugging session using the program in Figure 1 and
testcase #1 we used in our discussion above (N = 2, and the sides of the two triangles being (5, 4, 3) and
(4, 4, 2), respectively). When the program is executed for this testcase, the final value of sum printed is
12.93 instead of the correct value 9.87 (the area of the first triangle being 6 and that of the second being
3.87).8

We first enable exact dynamic analysis by clicking on the toggle button labeled exact dynamic analysis.
We then set a breakpoint on line 46 and run the program for the above testcase. When the execution stops
at the breakpoint,9 we select the variable sum using the mouse and print its value by clicking on the print
button. The incorrect value, 12.93, is printed.

We then click on the reaching defs button to find the last definition of sum and find that the assignment
on line 43 last assigned a value to sum, as shown in Figure 11. We set another breakpoint on line 43 and
click on the backup button to restore program state to what it was just before the assignment on line 43 was
last executed. We then print the value of sum at that location, and find that its correct value at that point, 6,
is printed.

8We have rounded values of area and sum to the second decimal place for this discussion.
9Represented by the little stop sign. See Figure 13.

16



Figure 12: Execution backtracking from line 16 to line 12 to line 7

Thus far, sum contains only the area computed during the previous iteration. This implies that area
was correctly computed for the first triangle and that it must be wrong for the second triangle. We print the
current value of area and find that it is indeed incorrect—6.93 instead of 3.87. The tool screen at this time
is shown in Figure 13. Notice the value of sum before and after the “backup” command, as displayed in
the bottom (output) window.

We next click on the data slice button to obtain the dynamic slice for the current value of area. The

17



Figure 13: Tool screen after backtracking from line 46 to line 43

slice obtained is as shown in Figure 4. To our surprise, we find the assignment on line 37 that computes
the area of an equilateral triangle belongs to the slice instead of the assignment on line 40 for an isosceles
triangle. We also find the assignment on line 27 that assigns equilateral to class in the slice.

To check if the values of the sides of the triangle are correct, we print sides[i] and find that the current
values of the three sides of the triangle are (4, 2, 2) and not (4, 4, 2)—the input values. The if statement on
line 26 determines if the triangle is equilateral, and if so, sets the value of class. Therefore, we set another

18



breakpoint at that line and further backup execution to that location. We again print the value of sides[i] and
this time we find the values of the three sides to be correct—(4, 4, 2). The current values of the three sides
are not equal and still the boolean expression on line 26 that checks if all three sides are equal evaluates to
true! This suggests there must be something wrong with the expression. On further examination of that
expression, we discover the error in the second equality subexpression within the condition. The erroneous
comparison expression always returns true (as the length of a side is always greater than zero) and also
assigns the length of side c to side b. The tool screen at this time is shown in Figure 14. Note the values of
sides[i] before and after the backup is done.

5 Implementation

Our debugging system is built into versions of the GNU C compiler “gcc” and the GNU source-level
debugger “gdb” [Sta89]. Our intent has not been to write a production-quality tool but to show the
feasibility of the above mechanisms. We decided, therefore, to modify an existing compiler and debugger
rather than write a new system. We chose the GNU tools because of their availability and their ability to
run on different hardware platforms. Although this choice has led to some problems, it has allowed us to
rapidly develop a prototype that will work for full ANSI C.

We have modified gcc to produce a program dependence graph [FOW87, OO84, HRB90] along with
the object code of the given program. We also made several modifications to gdb:

� Modifications were made to read and use the program dependence graph generated during compilation.

� Code was added to perform necessary runtime analysis required for execution backtracking and
dynamic slicing.

� Modules for obtaining static, dynamic, and approximate dynamic slices were added.

� A window and mouse-based interface was added so slices could be displayed.

As our intention was to show how slicing and backtracking can be usefully combined with standard
debugging functions like breakpoints, single-stepping, examining values, etc., we only included these
most common debugging functions in our windowed interface rather than provide every function that gdb
provides.

The backtracking mechanism described here is implemented as a form of history-saving, with values
attached to the same structures used in the slicing mechanism. This gives the user considerable power at
the possible expense of the need for unbounded storage. Bugs that produce infinite loops, for instance, may
exhaust the storage available to the debugger.

Alternatively, it is possible to use structured backtracking as described in [AS88]. This approach
provides the user with almost the same capabilities, but allows the storage needed to be bounded at compile
time in most cases. If we were using structured backtracking in our example in Section 4, we would not
have been able to backtrack from the second iteration of the loop to the inside of the first. Rather, we
would have had to backtrack to the beginning of the loop itself and execute forwards to the given statement.
This can be implemented in a manner transparent to the user; a more complete explanation is available in
[AS88, ADS90].

19



Figure 14: Tool screen after execution has been backtracked to line 26

6 Related Work

The concept of static program slicing was first proposed by Weiser [Wei84, Wei82]. He also presented
an algorithm to compute static slices based on iterative solution of data-flow equations. Ottenstein and
Ottenstein later presented an algorithm in terms of graph reachability in the Program Dependence Graph,
but they only considered the intra-procedural case [OO84]. Horwitz, Reps, and Binkley have extended

20



the program dependence graph representation to what they call the “system dependence graph” to find
inter-procedural static slices under the same graph-reachability framework [HRB90]. Bergeretti and Carŕe
have also defined information-flow relations somewhat similar to data- and control dependence relations,
that can be used to obtain static program slices (referred to as “partial statements” by them) [BC85]. Uses
of program slicing have also been suggested in many other applications, e.g., program verification, testing,
maintenance, automatic parallelization of program execution, automatic integration of program versions,
etc. (see, e.g., [Wei84, BC85, HPR89]).

When a program slice is defined with respect to a variable occurrence, it is assumed that control does
eventually reach the corresponding program location. The issue of non-termination of program execution
is not addressed under this definition. Podgurski and Clark have extended the regular notion of control
dependence (which they refer to as “strong control dependence”) to “weak control dependence” that includes
inter-statement dependencies involving program non-termination [PC90]. To detect program faults other
than infinite loops, however, strong control dependence gives much finer slices compared to weak control
dependence. The definintion of data-dependence remains the same in both cases.

Korel and Laski extended Weiser’s static slicing algorithms for the dynamic case [KL88]. Their definition
of a dynamic slice is different from ours[AH90]. Their definition requires that if any one occurrence of a
statement in the execution history is included in the slice then all other occurrences of that statement be
automatically included in the slice, even when the value of the variable in question at the given location is
unaffected by those other occurrences. For example, if the program in Figure 4 is executed for testcase #1,
and we find the dynamic slice for the variable area on line 43 during the second iteration, their definition
will also require that all statements that affected the variable area at the same location during the previous
iterations be included in the slice. This means lines 23, 24, 25, 30, 31, and 35 also must be included in the
dynamic slice, although the current value of area is totally unaffected by the execution of these statements.
Thus, their definition may yield unnecessarily large dynamic slices. The corresponding slice produced by
our tool is shown in Figure 4.

The concept of reverting program state in a debugging system is not new. EXDAMS, an interactive
debugging tool for Fortran developed in the late 1960s, also provided an execution replay facility [Bal69].
In that system, first the complete history tape of the program being debugged for a testcase was saved. Then
the program was “executed” through a “playback” of this tape. At any point, the program execution could
be backtracked to an earlier location using the information saved on the history tape. However, if a program
was stopped at some location it was not possible to change values of variables before executing forward
again because EXDAMS simply replayed the program behavior recorded earlier.

Zelkowitz incorporated a backtracking facility within the programming language PL/1 by adding a
RETRACE statement to the language [Zel71]. With this statement, execution could be backtracked over
a desired number of statements, up to a statement with a given label, or until the program state matched
a certain condition. This incorporation of backtracking facilities within a programming language can be
useful in programming applications where several alternate paths should be tried to reach a goal. Such
problems frequently arise in artificial intelligence applications, for instance. However, because the user
must program the RETRACE statements into the code, this approach does not provide an interactive control
over backtracking while debugging.

Systems like IGOR[FB88] and COPE[ACS84] perform periodic checkpointing of memory pages or file
blocks modified during program execution. Using these checkpoints program execution can be restarted
at arbitrary points. This approach, while suitable for undoing effects of whole programs, may not be

21



appropriate for performing statement-level backtracking: even if a statement execution results in a small
change in a file or a page block, the whole block is saved again.

The INTERLISP system, a program development environment for the LISP language, also provides
recovery facilities within the language framework [Tei78]. It provides UNDO and REDO functions whose
implementations are embedded within the language processor. INTERLISP provides these backtracking
facilities in a functional programming environment, whereas our interest has been to provide a backtracking
facility for debugging in the more common procedural environment.

Miller and Choi’s PPD [MC88] performs flow-back analysis of parallel programs like EXDAMS does
for sequential programs. They use a notion of incremental tracing where portions of the program state are
checkpointed at the start and the end of segments of program-code called emulation-blocks. Later these
emulation blocks may be reexecuted to build the corresponding segments of the dynamic dependence graph.

7 Concluding Remarks

Debugging is a complex and difficult activity. The person doing the analysis must determine the cause and
the location of a program failure. The failure may be manifested far away from the fault (bug) itself—far
away, both in lines of code and in execution history. Providing tools that increase the ability of the analyst
to identify the location or nature of the software bug involved will lead to more efficient debugging.

In this paper, we have presented a prototype tool that integrates some conventional debugging techniques
with some interesting new mechanisms. Although some of the ideas behind our new approaches are related
to techniques used in previous systems, our implementation and use of these features involves novel new
algorithms and presentation methods.

The result of our efforts is a window-based debugging tool that presents the user with a number of
powerful, yet easy-to-understand, techniques to help identify the location of software faults. Our experiences
with the tool so far have convinced us that these techniques are quite useful, and we will be conducting
further experimentation on these, and other new debugging mechanisms in the future.

Acknowledgments

We would like to thank Bob Horgan for our discussions with him, Ed Krauser for his help in implementation,
and Ryan Stansifer and Hsin Pan for their comments on an earlier draft of this paper.

References

[ACS84] James E. Archer, Jr., Richard Conway, and Fred B. Schneider. User recovery and reversal in
interactive systems. ACM Transactions on Programming Languages and Systems, 6(1):1–19,
January 1984.

[ADS90] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. An execution backtracking ap-
proach to program debugging. Technical Report SERC-TR-22-P, Software Engineering Research
Center, Purdue University, West Lafayette, IN, 1990. Revised from the August, 1988 report.

22



[AH90] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings of the
SIGPLAN’90 Conference on Programming Language Design and Implementation, White Plains,
New York, June 1990. ACM SIGPLAN. SIGPLAN Notices, 25(6):246–256, June 1990.

[AM86] Evan Adams and Steven S. Muchnick. Dbxtool: a window-based symbolic debugger for Sun
work-stations. Software Practice and Experience, 16(7):653–669, July 1986.

[AS88] Hiralal Agrawal and Eugene H. Spafford. An execution backtracking approach to program
debugging. In Proceedings of the Sixth Annual Pacific Northwest Software Quality Conference,
pages 283–299, Portland, Oregon, September 1988.

[AS89] Hiralal Agrawal and Eugene H. Spafford. A bibliography on debugging and backtracking. ACM
Software Engineering Notes, 14(2):49–56, April 1989.

[Bal69] R. M. Balzer. Exdams: Extendible debugging and monitoring system. In AFIPS Proceedings,
Spring Joint Computer Conference, volume 34, pages 567–580, Montvale, New Jersey, 1969.
AFIPS Press.

[BC85] Jean-Francois Bergeretti and Bernard A. Carŕe. Information-flow and data-flow analysis of while
programs. ACM Transactions on Programming Languages and Systems, 7(1):37–61, January
1985.

[Car86] Thomas A. Cargill. Pi: a case study in object-oriented programming. InOOPSLA’86 Conference
Proceedings, Portland, OR, September 1986. ACM SIGPLAN. SIGPLAN Notices, 21(11):350–
360, November 1986.

[Dun86] Kevin J. Dunlap. Debugging with Dbx. In Unix Programmers Manual, Supplementary Docu-
ments 1. 4.3 Berkeley Software Distribution, Computer Science Division, University of Califor-
nia, Berkeley, CA, April 1986.

[FB88] Stuart I. Feldman and Channing B. Brown. Igor: a system for program debugging via reversible
execution. In Proceedings of the Workshop on Parallel and Distributed Debugging, Madison,
WI, May 1988. ACM SIGPLAN/SIGOPS. SIGPLAN Notices, 24(1):112–123, January 1989.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and its
uses in optimization. ACM Transactions on Programming Languages and Systems, 9(3):319–349,
July 1987.

[Gou74] J. D. Gould. An exploratory study of computer program debugging. Human Factors, 16:258–277,
1974.

[HPR89] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninterfering versions of programs.
ACM Transactions on Programming Languages and Systems, 11(3):345–387, July 1989.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkeley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–60, January
1990.

[Kat79] H. Katsoff. Sdb: a symbolic debugger. Unix Programmer’s Manual, 1979.

23



[KL88] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Processing Letters,
29:155–163, October 1988.

[Luk80] F. J. Lukey. Understanding and debugging programs. International Journal of Man-Machine
Studies, 12(2):189–202, February 1980.

[MB79] J. Maranzano and S. Bourne. A tutorial introduction to ADB. Unix Programmers Manual, 1979.

[MC88] Barton P. Miller and Jong-Deok Choi. A mechanism for efficient debugging of parallel pro-
grams. In Proceedings of the SIGPLAN’88 Conference on Programming Language Design and
Implementation, Atlanta, GA, June 1988. ACM SIGPLAN. SIGPLAN Notices, 23(7):135–144,
July 1988.

[MH89] Charles E. McDowell and David P. Helmbold. Debugging concurrent programs. ACM Computing
Surveys, 21(4):593–623, December 1989.

[OO84] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a software devel-
opment environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Symposium on Practical
Software Development Environments, Pittaburgh, PA, April 1984. ACM SIGSOFT/SIGPLAN.
SIGPLAN Notices, 19(5):177–184, May 1984.

[PC90] Andy Podgurski and Lori A. Clarke. A formal model of program dependences and its implications
for software testing, debugging, and maintenance. IEEE Transactions on Software Engineering,
16(9):965–979, September 1990.

[Sch71] Jacob T. Schwartz. An overview of bugs. In Randall Rustin, editor, Debugging Techniques in
Large Systems, pages 1–16. Prentice-Hall, Engelwood Cliffs, NJ, 1971.

[Sta89] Richard M. Stallman. GDB Manual, third edition, GDB version 3.4. Free Software Foundation,
Cambridge, MA, October 1989.

[Tei78] Warren Teitelman. Interlisp Reference Manual, Fourth Edition. Xerox Palo Alto Research
Center, Palo Alto, CA, 1978.

[Wei82] Mark Weiser. Programmers use slices when debugging.Communications of the ACM, 25(7):446–
452, July 1982.

[Wei84] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):352–357,
July 1984.

[Zel71] M. V. Zelkowitz. Reversible Execution As a Diagnostic Tool. PhD thesis, Dept. of Computer
Science, Cornell University, January 1971.

24


