
SUPPORT FOR SECURITY IN DISTRIBUTED

SYSTEMS USING MESSIAHS

Steve J� Chapin Eugene H� Spa�ord

Department of Mathematics COAST Laboratory

and Computer Science Department of Computer Sciences

Kent State University Purdue University

Kent� OH ���������	 West Lafayette� IN �
��
�	
��

sjc�cs�kent�edu spaf�cs�purdue�edu

Abstract

The messiahs project is investigating the construction of a set of mech�

anisms to support task placement in autonomous� heterogeneous� distributed

systems� In this paper we explore aspects of the messiahs system that support

security in distributed systems�

In particular� we will concentrate on aspects of messiahs that defeat denial

of service attacks� provide �rewalls� protect private system description infor�

mation� and support matching of tasks and systems based on security ratings�

Development of these features will allow tasks to be scheduled in a heteroge�

neous distributed system� while protecting data and system integrity�

messiahs is a set of mechanisms that ties together disparate computing

resources to achieve distributed processing without sacri�cing local control�

messiahs is novel in that it includes support for autonomous systems while

providing �exible� scalable mechanisms to implement scheduling algorithms for

heterogeneous distributed systems�

Keywords� distributed systems� scheduling� security� autonomy� availabil�
ity� visibility

� Introduction

We are investigating scheduling support mechanisms for autonomous� heterogeneous�
distributed systems� Our goal is to develop mechanisms that allow scheduling al�
gorithms to be implemented for large�scale distributed systems using heterogeneous
hardware and software� across administrative boundaries� Such large�scale distributed
systems can achieve performance surpassing that of the largest parallel supercomput�
ers ����� and increase utilization of underutilized computing power �	�� As part of



this work� we have developed a set of mechanisms and a prototype implementa�
tion called messiahs� Mechanisms E
ecting Scheduling Support In Autonomous�
Heterogeneous Systems ��� ���

Our research is motivated by three factors� First� decentralization of computing
systems has introduced administrative domains as a barrier to distributed computing�
To overcome this� some method must be found to unite systems from incompatible
administrative domains while respecting the autonomy of the individual systems�
Second� many researchers have concentrated on scheduling and load�balancing algo�
rithms while assuming the existence of the mechanisms necessary to support them

see� for example� Sarkar and Hennessy ����� Lo ����� or Blake ����� They have ei�
ther designed ad�hoc mechanisms to support particular algorithms� or limited their
research to theoretical analysis of the scheduling algorithms� Third� users of com�
puter systems may require resources that are not available locally� such as specialized
processors or remote databases�

This paper concentrates on security aspects of the messiahs mechanisms� which
ties in with the �rst factor listed above� As part of the support for distributed
computing across administrative domains� messiahs provides mechanisms that

�� thwart denial of service attacks�

�� can act as a �rewall to limit access by outside systems�

�� can restrict the �ow of sensitive system description information outside an ad�
ministrative domain�

�� and allows systems and tasks to be labeled in support of partitioning based on
security requirements�

Section � gives background information describing the messiahs system� Sections
�� �� �� and � describe the messiahs mechanisms that support the four points listed
above� Section � contains concluding remarks and proposes future directions for our
investigation of security in distributed task placement�

� MESSIAHS Background

Our systems are structured in a hierarchical fashion based on virtual systems repre�
senting administrative domains� A virtual system is composed of a set of subordinate
virtual systems� Within each of these sets there can be many machines� which could
be further grouped into virtual systems� At the lowest level� each machine is the sole
member of a virtual system� We call an encapsulating virtual system a parent� and a
subordinate system a child� Children with the same parent are called siblings�

For example� �gure � displays part of the administrative structure of the Kent
State University Mathematics and Computer Science Department� Within the de�
partment� there are several generally accessible machines such as Chaos and Nimitz�
as well as machines supporting specialized research projects� One of these projects is



Kent MCS

NimitzChaos OSR

JasperOgionVetch

Figure �� A subset of the machines in the Kent State Math�CS Dept�

the Operating Systems Research 
OSR� project� which has administrative authority
over a set of machines including Ogion� Vetch� and Jasper�

Inmessiahs� each virtual system in the hierarchy has a scheduling support module
that is responsible for maintaining the set of information required by the scheduling
policy� Scheduling algorithms take a set of tasks and a description of the underly�
ing multicomputer and devise an assignment of tasks to processors according to an
optimizing criterion�

Our method for supporting scheduling decisions has three main parts� the sys�

tem description vector� the task description vector� and the update protocol used
to communicate between systems� The description vectors contain state description
information� including system processing load� memory statistics� processing capabil�
ities� and storage capacities� The update protocol sends system description vectors
between modules�

The model for update �ow is that a module collects several description vectors�
adds information describing the local system� and condenses the resulting set of de�
scription vectors into one vector to facilitate scalability� This vector will be advertised
to its parents and children� The module can also decide not to include data in the
outgoing vector based on security constraints�

When a task is submitted for execution� a task description vector is sent to a
scheduling module�� The scheduling module compares the task description to its
own system description and the system description vectors it has received from other
systems� Based on the scheduling policy� the module chooses one of the systems and
attempts to schedule the task there�

messiahs attempts to sacri�ce the least autonomy for participating systems�
There are four types of autonomy in distributed systems� as de�ned in ��� �� ���
and re�ned in ���� execution autonomy� communication autonomy� design autonomy�
and administrative autonomy� Execution autonomy means that each system decides
whether it will honor a request to execute a task� each system also has the right to
revoke a task that it had previously accepted� Communication autonomy means that
each system decides the content and frequency of state advertisements� and what
other messages it sends� A system is not required to advertise all its capabilities� nor
is it required to respond to messages from other systems� Design autonomy gives the
architects of a system freedom to design and construct it without regard to existing

�These requests are called scheduling requests�



systems� yielding heterogeneous systems�
Administrative autonomy means that each system can have its own usage policies

and behavioral characteristics� independent of any others� In particular� a local sys�
tem can run in a manner counterproductive to a global optimum� In the usual case�
scheduling modules will cooperate� but administrators must be free to set their local
policies or they are unlikely to participate in the distributed system ��� 	��

The next four sections examine the behavior of the module and show how the
autonomy support within messiahs facilitates security in distributed systems�

� Denial of Service Attacks

Communication� administrative� and execution autonomy form a basis to thwart de�
nial of service attacks� Each system can autonomously decide whether or not to
accept any task� Thus� policies can be written to use current load or the identity of
a requesting system as criteria to screen incoming requests�

messiahs implements two interface layers that scheduler�writers can use to im�
plement their algorithms� The �rst� called the MESSIAHS toolkit� is a library of
function calls that can be used with a high�level language such as C ���� The sec�
ond� the MESSIAHS Interface Language� or MIL� is an interpreted language that is
especially tailored to the task of scheduling ����

Either of these interface layers can be used to implement scheduling �lters� A
�lter takes two description vectors and returns a numerical result indicating how well
they match� A task �lter compares an incoming task description vector to a system
description vector and returns an integer� A negative number indicates an error during
the evaluation of the �lter� while zero indicates that there is no match� In either case�
the task is not accepted for input� Positive integers indicate a match� In general�
larger values imply a better match� although a boolean �lter can be implementing by
returning the same value for all matches� e�g� the integer one�

For example� the local policy could decline scheduling requests when the local
load average exceeds a threshold� This would limit the impact of outside tasks on the
system� although it would not discriminate between legitimate and malicious requests
for resources� A policy based on the source of the request could ensure that the task
comes from a trusted source� A mixture of these policies could limit the number of
tasks from untrusted sources while also limiting the total load on the system� In this
way� an attempted denial of service will consume at most a small percentage of the
resources of the machine�

Communication autonomy can also help to defeat denial of service attacks� Be�
cause a system is not required to respond to a message� it can simply ignore suspicious
scheduling requests� This diminishes the possibility of saturating the scheduling mod�
ule with requests from outlaw systems� It also eliminates a possible covert channel�
wherein an attacker could study the behavior of the system in response to spurious
scheduling requests�

In addition� execution autonomy allows the scheduling policy to revoke or migrate
running jobs� This facility can be used to remove tasks consuming excess resources�



or to respond to a surge in load caused by an attempted denial of service attack�

� Firewalls

It is sometimes desirable to mask the details of a resource� while still allowing outside
access� This is commonly done for electronicmail systems� and is usually implemented
through the use of a �rewall ����� All attempts to access a resource pass through the
�rewall� and the outside agent accessing the resource cannot tell the exact location
of the resource�

For example� in �gure �� the OSR node can act as a �rewall to hide the presence
of Vetch� Ogion� and Jasper� It can still advertise some of their capabilities to the
other nodes in the system� but it appears as if all their resources are located at the
OSR node�

messiahs incorporates two mechanisms to accomplish this� information conden�
sation and proxy acceptance� Information condensation takes place when two or more
update vectors are combined to form a single vector for advertisement� For example�
OSR combines the capabilities of OSR� Vetch� Ogion� and Jasper into a single vector
that can be sent to nodes outside the virtual system rooted at OSR� In the process�
all identifying information� such as location information of individual resources� is
removed�

For example� suppose Ogion were an SGI Indy running IRIX ��� �� Vetch were a
SPARC IPC running SunOS ����� and Jasper were a �	� clone running FreeBSD� The
information advertised by OSR would indicate the presence of MIPS� �	�� and SPARC
processors� as well as the presence of the IRIX� BSD� SunOS operating systems�
There is no indication which processor is running which operating system� The OSR

node knows this� but does not advertise it to the outside world� This might cause
another node to send a spurious request to OSR� e�g� a request to run a task on
a SPARC processor running the BSD operating system� However� OSR will have
enough information to discard the request� and no tasks will be misscheduled as a
result�

This leaves open the question� �If a task is scheduled on a system� how is it moved
to the system without the originator knowing where the system is�� The solution
used in messiahs is the proxy accept� When passing a scheduling request to an
interior node� the �rewall logs the request� replaces the originator�s address with its
own address� and waits for the response from the interior node� If the node accepts
the request� it sends an acceptance message back to the �rewall�

Upon receipt of the accept message� the �rewall replaces the address of the ac�
ceptor with its address� and forwards the acceptance to the originator of the request�
The originator then treats the �rewall as the acceptor� and forwards the task for
execution� The �rewall then forwards the task to the real acceptor� and continues to
act as an intermediary between the acceptor and the outside world�

�Indy and IRIX are trademarks of Silicon Graphics� Incorporated�
�SPARC and SunOS are trademarks of Sun Microsystems� Inc�



struct statvec �

float min� max� mean� stddev� total�

��

typedef struct statvec Statvec�

struct procclass �

bit�� nsys� �	 number of machines in this class 	�

Statvec qlen� �	 run queue statistics 	�

Statvec busy� �	 load on cpu 
percentage� 	�

Statvec physmem� �	 total physical memory 	�

Statvec freemem� �	 available memory 	�

Statvec specint��� �	 ratings for specint �� 	�

Statvec specfp��� �	 ratings for specfp �� 	�

Statvec freedisk� �	 public disk space statistics 	�

��

Figure �� Statistics vectors and processor classes in messiahs

� Control of Advertised Information

To be secure� systems must not advertise sensitive information to untrusted systems�
The communication autonomy support in messiahs allows scheduling policies to omit
data from their outgoing vectors� This feature can be used to �lter outgoing data to
be consistent with a security policy�

To facilitate scalability� messiahs uses a statistical representation of the capa�
bilities of a virtual system� That is� instead of listing speci�c ratings of individual
machines� the minimum� maximum� mean and standard deviation for a capability are
kept� as well as the number of systems represented in a vector 
see �gure ���

To partition the possible space of attributes� machines are divided into classes
based on logarithmic scale of their processor speed� with a structure containing sta�
tistical information regarding the available resources for machines in each class 
see
�gure ��� In this way� information can be condensed while still providing enough
information for scheduling algorithms to make intelligent choices�

messiahs provides routines to automatically combine multiple statistical vectors
into one� This is the mechanism used by the module to coalesce multiple system
descriptions into the description of a single virtual system� The autonomy support
within the mechanisms allows �elds to be omitted from the combination� For example�
if the OSR project administrator does not want the capabilities of Jasper advertised
to nodes outside the project� he can specify that Jasper�s resources not be included in
OSR�s advertised vector� Both MIL and the scheduling toolkit allow the administrator
to restrict information advertisement in this fashion�



begin combining

string 
out�tier not match

out�tier� �preferred���

set 
out�tier � ��preferred��

string 
out�department not match

out�department� �research���

set 
out�department � ��research��

end

Figure �� A code fragment from MIL using labels

The obvious tradeo
 is this scheme is the size of the advertised vectors versus
the degree of detail present in the vectors� The approach taken allows the vectors
to be kept to a reasonable size� while still providing su�cient visibility of individual
machines so that scheduling algorithms can function well�

� Extension and Labeling Support

In addition to the �xed data represented by statistical vectors� messiahs also allows
administrators to extend the system description vector� This a
ords the mechanisms
�exibility in supporting scheduling algorithms� and can be used to support secure
processing based on security classi�cations�

Systems can insert labels in their extension vectors to indicate the security clas�
si�cation required to run a task on that system� Tasks can include a security label
listing their security classi�cation� The scheduling algorithm can match the levels to
ensure that the task�s security rating is equal to or higher than that of the system�

The messiahs mechanisms can improve the e�ciency of a distributed computa�
tion� Large jobs can be partitioned into smaller tasks based on their security require�
ments� and then only those tasks that require secure processing will be run on secure
sites� Tasks that do not require secure processing can be run on any general�purpose
processor within the distributed system� This not only reduces the load on the se�
cure installations� it increases the security of these systems by ensuring that only
computations that require secure resources are run there�

This labeling mechanism could also be used in commercial systems� Within a
single organization� tasks could be labeled with their department of origin� e�g� sales
or research� Systems could protect private data by only executing certain classes
of jobs� This mechanism could also be used by an institution that sells processing
time to outside customers� The institution could o
er di
erent tiers of service� and
jobs from customers would be labeled based on the tier they had purchased� Jobs
from more expensive tiers might receive preferential treatment by being given higher
priority� or being assigned to faster computers�

Figure � shows an example usage of labeling written in MIL� Assume that the

�The update vectors in the prototype implementation are approximately two kilobytes in size�



intent is to advertise that the virtual system will run tasks for preferred customers
within the research department� This code fragment makes sure that the service tier
preferred appears in the outgoing description vector� and ensures that the research de�
partment label also appears� Again� outside systems cannot determine if the preferred
tier applies to the research department� but this will not cause a breach of security�

Two factors complicate the use of messiahs for this type of service� First� there
must be some method of ensuring that machines and tasks cannot spoof higher secu�
rity classi�cations or service tiers� Second� there must be guarantees that the data in
the extension area remains private and uncorrupted� because communication auton�
omy allows intervening systems to read or alter the contents of an advertisement� In
the absence of a distributed secure network� we are left to devise software solutions
to these problems�

We can use well�known authentication techniques such as those found in Kerboros
���� to ensure the validity of labels� A possible solution to the second problem is to
encrypt private data within the extended portion of the task description vector so
that only trusted hosts can view the secret data� However� this scheme presents the
di�culty that intermediate nodes have no semantic knowledge of the encrypted infor�
mation� and therefore cannot apply any combining rules to condense the information�
Finding a clean solution to this dilemma is an open problem�

� Concluding Remarks

We have described the messiahs system for scheduling support� messiahs includes
generous support for autonomy in distributed systems� and this autonomy support
can form the basis for security measures�

We have shown how the scheduling support mechanisms can support four aspects
of security� thwarting denial of service attacks� acting as a �rewall� restricting the
�ow of information outside an administrative domain� and allowing systems and tasks
to be matched based on their security requirements�

The messiahs system has several potential applications for distributed systems
in a trusted environment� The mechanisms can support process migration and load
balancing� Because the update protocols track which machines are available� fault
tolerance can be layered over the mechanisms� The revocation facility can support
transaction management in a nested�transaction environment�

Our plans for the future are to study the issue of cryptographic techniques to
handle end�to�end security issues� However� there are signi�cant barriers to be over�
come to prevent nodes from advertising encrypted� sensitive information outside an
administrative domain�

References

��� B� A� Blake� Assignment of Independent Tasks to Minimize Completion Time�
Software�Practice and Experience� ��
����������� September �����



��� A� Bricker�M� Litzkow� and M� Livny� Condor Technical Summary� Technical Re�
port ����� Department of Computer Science� University of Wisconsin�Madison�
January �����

��� S� Chapin and E� Spa
ord� Implementing Scheduling Algorithms Using MESSI�
AHS� Scienti�c Programming� ����� to appear in a special issue on Operating
System Support for Massively Parallel Computer Architectures�

��� S� J� Chapin� Scheduling Support Mechanisms for Autonomous� Heterogeneous�
Distributed Systems� Ph�D� Dissertation� Purdue University� �����

��� S� J� Chapin and E� H� Spa
ord� Constructing Distributed Schedulers with the
MESSIAHS Interface Language� In ��th Hawaii International Conference on

Systems Sciences� volume �� pages �������� Maui� Hawaii� January �����

��� W� Du� A� K� Elmagarmid� Y� Leu� and S� D� Ostermann� E
ects of Local Au�
tonomy on Global Concurrency Control in Heterogeneous Distributed Database
Systems� In Second International Conference on Data and Knowledge Systems

for Manufacturing and Engineering� pages �������� IEEE� ��	��

��� F� Eliassen and J� Veijalainen� Language Support for Multidatabase Transactions
in a Cooperative� Autonomous Environment� In TENCON ���� pages �����	��
Seoul� ��	�� IEEE Regional Conference�

�	� C� A� Gantz� R� D� Silverman� and S� J� Stuart� A Distributed Batching System
for Parallel Processing� Software�Practice and Experience� ��� ��	��

��� H� Garcia�Molina and B� Kogan� Node Autonomy in Distributed Systems� In
ACM International Symposium on Databases in Parallel and Distributed Sys�

tems� pages ��	����� Austin� TX� December ��		�

���� S� Gar�nkel and E� Spa
ord� Practical UNIX Security� O�Reilly and Associates�
����� ISBN ��������������

���� A� H� Karp� K� Miura� and H� Simon� ���� Gordon Bell Prize Winners� IEEE
Computer� ��
������	�� January �����

���� V� M� Lo� Task Assignment to Minimize Completion Time� In Distributed

Computing Systems� pages �������� IEEE� ��	��

���� V� Sarkar and J� Hennessy� Partitioning Parallel Programs for Macro�Data�ow�
In ACM Conference on Lisp and Functional Programming� pages �������� Au�
gust ��	��

���� A J� G� Steiner� B� C� Neuman� and J� I� Schiller� Kerberos� An Authentication
Service for Open Network Systems� In Usenix Conference Proceedings� pages
�������� Dallas� TX� February ��		�


