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Abstract

Mutation analysis is a well-studied method of measuring test-case adequacy. Mutation anal-
ysis involves the mutation of a program by introduction of a small syntactic change in the
software. Existing test data sets are then executed against all these mutant programs. If the
test data set is adequate for testing the original program, it will distinguish all of the incor-
rect mutant programs from the original program. As an ad-hoc procedure, a stopping criterion
is conventionally based on a given \Y% of the mutants to be distinguished" with a certain
\con�dence level of X%" over a multiplicity of random test cases.

Alternatively, we propose a Bayes sequential procedure for testing H0 : p = p1 (acceptable
fraction of live mutants to demonstrate good quality) vs. HA : p = p2 (unacceptable fraction
of live mutants to demonstrate bad quality). This derives a sequential probability ratio testing
(SPRT) that is the most economical sampling scheme with given prior probabilities, decision
and sampling cost functions. The implementation of our proposed method on a sample program
shows the cost e�ectiveness of the new technique as compared to the current, deterministic
approach, which was not structured by statistical hypothesis testing.
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1 Introduction

Software testing is a critical phase of the software development life cycle. However, software testing
can be an expensive proposition. One desires to obtain an adequate measure of the reliability of
a software system while minimizing the expenditure of resources. Testing is always a trade-o�
between increased con�dence in the correctness of the software under examination, and constraints
on the amount of time and e�ort that can be spent testing that software.

For over a decade, researchers have been working with program mutation as a method of devel-
oping test cases to test software.1 A basic goal of program mutation is to provide the user with a
measure of test set adequacy, by executing that test set against a collection of program mutations.
Mutations are simple changes introduced one at a time into the code being tested. These changes
are derived empirically from studies of errors commonly made by programmers when translating
requirements into code, although theoretical justi�cation also can be found for their selection[12].

A mutant is killed if the execution of the mutated code against the test set distinguishes the
behavior or output of the mutation from the unmutated code. The more mutants killed by a
test set, the better the measured adequacy of the test set. By proper choice of mutant operators,
comprehensive testing can be performed, [5] including path coverage [14] and domain analysis. [23]
By examination of unkilled mutants, testers can add new test cases to better the adequacy score
of the entire test set.

Mutation analysis is designed to substantiate the correctness of a program �. Mutation analysis
strives to develop test data that, when applied to the program �, illustrates the equality of the in-
tended and observed behaviors of �. This methodology is normally embedded in a test environment
that enables a tester to test his program interactively.

Somewhat more formally, the mutation approach is to induce syntactically correct changes into
a program �, thereby creating a set of mutant programs. Each mutant represents a possible error
in �, and the goal of the tester is to construct a set of test data � that distinguishes the output or
behavior of �(�) from that of all mutant programs. Test data sensitive enough to distinguish all
mutant programs is deemed adequate to infer the probable correctness of �.

The mutation analysis methodology is as follows: submit a program � and a set of test data
� whose adequacy is to be determined. The mutation system �rst executes � with respect to � .
If the results are incorrect, then certainly � is in error. However, if the results appear correct,
it may still be that � is in error, for the test data set � may not be adequate to distinguish this
inherent incorrectness. In this case, a set of mutant programs are created, call them �1; : : : ;�m.
Each mutant program di�ers from the original program � by one single-point, syntactically correct
change. Such mutant transformations are statically de�ned for a language � and designed to expose
errors frequently committed by programmers using �.

For each execution of a mutant against the test set, �i(�), exactly one of two things happens:

[1] The mutant �i(�) yields di�erent results than �(�), or

1

Program mutation has been well documented in the literature and will only be summarized here. The reader
unfamiliar with mutation testing is directed to recent references on mutation for detailed descriptions and further
references, e.g. [8, 21, 13, 6, 24, 16].
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[2] The mutant �i(�) yield the same results as �(�).

In the �rst case, the mutant is said to be dead since the mutant di�erence between �i and � has
been distinguished by � . In the second case, either:

[a] � is not adequate to distinguish the mutant that gave rise to �i, or

[b] � and �i are equivalent programs and no test data � can distinguish their behavior (the
\error" that gave rise to �i was not an error at all, but an alternate encoding of �). Such a
�i is called an equivalent mutant.

Test data that leaves no live mutants or only equivalent mutants is said to be of adequate
sensitivity to infer the probable correctness of �. Moreover, the ratio of dead mutants to the total
number of nonequivalent mutants yields a relative measure of the adequacy of the test data � in
testing �. The test set � may be augmented with additional test cases and the process repeated
until an appropriate level of test case adequacy or threshold level in the cost of the test (in terms of
dollars, resources, etc.) has been reached. The test set � can then be carried into the maintenance
stage of the software life cycle.

2 On Mothra and the Stopping Rule

The Mothra software testing environment [10, 9, 8] is an integrated set of tools and interfaces
that support the planning, de�nition, preparation, execution, analysis, and evaluation of mutation-
based tests of software systems. Mothra is designed to be used starting at the earliest stages of
software development and continuing through the progressively later stages of system integration,
acceptance testing, operation, and maintenance. It has been in use at Purdue and other locations
for the last few years as a testbed for experimental work in software engineering.

One of the drawbacks to full mutation testing with a system such as Mothra involves the
number of mutations that must be executed. Each mutation is equal to the size and complexity
of the original program, and the number of mutants is proportional to the square of the number
of lines of source code present in the original software. Each mutant may need to be run against
many test cases before being distinguished from the original code. For routines in the hundreds of
lines of code, this may result in millions of separate executions.

It would be bene�cial to test only a small statistically random sampling of mutants against the
given test cases to determine, at some arbitrary level of con�dence, that the program is correct.
This would be of great utility in situations where full mutation testing would be too expensive, too
time consuming, or simply beyond the capabilities of the available testing software.

Conventionally, a typical mutation system user must specify test requirements of the following
form: [13] \I must be X% sure that Y% of the mutants of type Z are killed in unit A." Here,
X% is the degree of assurance Mothra will use to perform the random selection of mutants of
type Z in unit A. The user must still monitor the status information to determine whether or not
the stopping criteria Y% for the test of mutants of type Z in unit A has been achieved. Hence,
one de�nes a stopping criterion based on a given \Y% of the mutants to be killed" with a certain
con�dence level X% over a multiplicity of test-cases.
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This approach may be de�ned as a deterministic stopping rule-of-thumb, since the entire exper-
iment is of a random nature and is not structured by statistical hypothesis testing. The customary
ad hoc approach, although straightforward and easy, may result in a waste of testing time and
resources due to lack of a statistical risk analysis. The only de�nitive statement that can be made
from such testing involves achieving a 100% level of mutant distinction.

3 Sequential Statistical Procedures

The usual statistical hypothesis-testing procedures ordinarily have �xed sample size. In particular,
the statistical testing procedures have only answered the question, \Do we have su�cient evidence to
declare a particular hypothesis false?" Other models address the question, \When have we corrected
an 'optimum' number of errors? That is, should we now release the software?"[2] However, if we
allow the sample size to increase without limit, we can obtain a test for any prespeci�ed probability
of occurrence of Type I and Type II errors.2 Thus, if testing for H0 : � = �1 vs H1 : � = �2,
we can assure ourselves of our choice given the probability of a wrong decision. We can thus test
software to any prespeci�ed level of con�dence and criticality, rather than to some single, theoretical
\optimum" point.

Our approach will be to sample X1 = x1; : : : ; Xk = xk and after each observation Xk = xk,
make a decision based on x1; : : : ; xk whether or not to continue sampling. If we stop, we want to
choose between H0 and H1.

Let X1; : : : ; Xn be a sequence of i.i.d. (identical independently distributed) random variables
(r.v.) with p.d.f. (probability distribution function) F (x; �);� 2 
(parameter space), where the
xi's are observed sequentially. Let A be the space of actions available to the statistician.

De�nition: A sequential decision procedure has two components:

1. A stopping rule which speci�es for every set of values (x1; x2; : : : ; xn); n � 1
whether to stop sampling and choose a decision in A, or to continue sampling and
take another observation x.

2. A decision rule dn(x1; : : : ; xn) which chooses the action in A to be taken for the
set of values (x1; : : : ; xn) when the sampling is stopped.

4 The Sequential Probability Ratio Test (SPRT)

Let x1; x2; : : : be i.i.d r.v.'s with p.d.f. f(x;�) � 2 
 = f�1;�2g. Let f1(x) = f(x; �1); f2(x) =
f(x; �2). We want to test H0 : � = �1 vs H1 : � = �2 without �xing the sample size in advance.

For a �xed sample size k, the NP (Neyman Pearson) Lemma tells us to reject for large values
of the ratio

2

In this context, a Type II error is mistakenly accepting a faulty program. A Type I error is mistakenly rejecting
a good program as faulty.
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�k =
f2(x1)f2(x2) : : :f2(xk)

f1(x1)f1(x2) : : :f1(xk)
(1)

Wald [20] tells us to consider the sequence of ratios �1(x1); �2(x1; x2); : : : ; �(x1; : : : ; xk), i.e.
consider the sequence:

f2(x1)

f1(x1)
;
f2(x1)f2(x2)

f1(x1)f1(x2)
;
f2(x1) : : :f2(xk)

f1(x1) : : :f1(xk)
(2)

De�nition: The SPRT [22, 17, 11] (Test) for testing H0 : � = �1 versus H1 : � = �2 is
a rule that states:

1. if �k(x) >= A, stop sampling and reject H0 (accept H1).

2. if �k(x) <= B, stop sampling and reject H1 (accept H0).

3. if B < �k(x) < A, continue sampling and take another observation xk+1.

Here A and B are constants determined so that � = PfType I errorg = PfReject
H0 j�1g, i.e. probability of rejecting H0 when H0 : � = �1 is true. � = PfType II
errorg = PfFail to Reject H0 j�2g, i.e. probability of accepting H0 when H1 is true.

Namely, if N is the stopping time for this procedure,

� = P�1
(�N(x) >= A) (3)

� = P�2
(�N(x) <= B) (4)

5 Binomial SPRT

Let x1; x2; : : : be i.i.d. Bernoulli r.v.'s with p.d.f. f(x;�) = �x(1��)1�x x=0,1.

We now wish to test for H0 : � = �1 vs H1 : � = �2.

zi = log(
f(xi; �2)

f(xi; �1)
) =

(
log(�2

�1
) if xi = 1

log(1��2

1��1
) if xi = 0

Then

Sk =
kX
i=1

Zi = rk log(
�2

�1
) + (k � rk) log(

1��2

1��1
) (5)

where rk = number of 1's in x1; : : : ; xk =
Pk

i=1 xi. We observe Sk = sk and continue sampling if
b < sk < a i.e.

b < rk log(
�2

�1
) + (k � rk) log(

1� �2

1� �1
) < a; (6)

b < rk(log(
�2

�1
)� log(

1� �2

1� �1
)) + k log(

1� �2

1� �1
) < a (7)
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Solving the inequality for rk, we obtain, as illustrated in �gure 1:

b�k log(
1��2
1��1

)

log(
�2

�1
)�log(

1��2
1��1

)
< rk <

a�k log(
1��2
1��1

)

log(
�2

�1
)�log(

1��2
1��1

)
if �2 < �1 (8)

� = � = 0:100; �1 =
1
4 ; �2 =

3
4

0 2 4 6

0

1

2

3

4

rk

k

Reject H0

Accept H0

Continue

Sampling

Figure 1: rk =
Pk

i=1 xi vs. k

6 An Economical Bayesian SPRT in Mutation-Based Testing

We now propose a Bayes sequential procedure for testing H0 : p = p1 (acceptable fraction of live
mutants to demonstrate good quality) vs. HA : p = p2 (unacceptable fraction of live mutants to
demonstrate bad quality), where the prior distribution is given as P (p = p1) = a1; P (p = p2) =
a2; a1 + a2 = 1; p1 < p2.

This derives a sequential probability ratio test (SPRT) that is the most economical sampling
scheme with given prior probabilities, and decision and sampling cost functions. The implementa-
tion of our proposed method on a sample program shows the cost e�ectiveness of the new technique
as compared to the current, deterministic approach, which was not structured by statistical hypoth-
esis testing. We note here that Bayesian Sequential testing also defaults to the simple sequential
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procedure with no priors; or, if used with priors, when the sample size increases the a e�ect even-
tually becomes negligible. [11]

In a mutation-based testing environment, a sample (batch) of mutants (items) is inspected
(executed against a test data set) and the mutants are classi�ed as either dead (e�ective) or live
(defective). Let p denote the fraction of live mutants within a selected sample of nonequivalent
mutants. We assume that:

� a critical fraction of live mutants, p0, is known to exist;

� that a sample with a fraction of live mutants p < p0 is accepted as a good sample (the program
is judged correct); and

� others with p > p0 are programs not yet judged correct, and are returned for further testing
or rejected.

Let P (p) denote the prior distribution function based on apriori subjective software engineering
judgment. Within the sample for the software product submitted for inspection, we have the
following: P (p = p1) = a1; P (p = p2) = a2 where a1 + a2 = 1 and p1 < p0 < p2.

Also, let W21 denote the decision cost incurred if a software product with fraction live-mutants
p1 is rejected, analogous to the type-I probability of � in rejecting a good product mistakenly.
Similarly, letW12 denote the decision cost incurred if a software product with a fraction live-mutants
p2 is accepted, analogous to the type-II probability of � in accepting a bad product mistakenly.
Let c denote the cost of inspecting a single mutant. Now, the problem is to determine the most
economical sampling inspection plan. We want to structure our problem of product acceptance
sampling to that of testing two simple hypotheses H0 : p = p1 vs. HA : p = p2. Namely, we decide
to accept a software product if H0 holds true, and to reject it if HA holds true. Otherwise, we
continue sampling.

In a sequential sampling inspection plan, one mutant (item) is inspected at a time and the
inspection is stopped as soon as su�cient evidence is observed in favor of either of the hypotheses.
Hence, as long as the cost of inspection depends merely on the total number of mutants inspected
and no extra overhead cost is involved, a sequential sampling inspection plan will be the most
economical one. Wald and Wolfowitz [19] proved that when testing two simple hypotheses, the
sequential probability ratio test requires, on average, the fewest observations among all tests with
the same power.

Thus, this means that of all the sampling plans with the same or lower decision costs, a plan
based on the SPRT will have the minimum cost of inspection. For mutation testing, where each test
involves potentially expensive execution of mutated programs against large test sets, this �nding is
especially important.

Following is the method of arriving at the optimum SPRT procedure based on the basic theory
given by Barnard [3]:

The optimum test procedure will be given as:

� Continue inspection as long as �2 < � = (a1=a2)l(x; y)< �1

� Stop inspection and accept the batch as soon as � > �1
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� Stop inspection and reject the batch as soon as � < �2

where x and y denote, respectively, the number of dead mutants and live mutants obtained at any
stage, and l(x; y) is the likelihood ratio. This ration is equal to: l(x; y) = (p1=p2)

y(q1=q2)
x where

q1 = 1� p1 and q2 = 1� p2.

It is more convenient to write the inequality in step 1 of the above as follows:

L =
a2�2
a1

< l(x; y)< U =
a2�1
a1

(9)

in which similar rules for acceptance and rejection apply.

Let A(U; L; p) be the probability that a sample with fraction live-mutants p will be accepted.
Let R(U; L; p) = 1 � A(U; L; p) be de�ned as the rejection probability. Let S(U; L; p) denote the
average number of mutants required to be inspected.

To obtain equations for the optimum boundaries, we proceed in the manner indicated in equation
(9). [18] The decision boundary is the locus of points such that the expected cost of taking an
immediate decision is equal to the expected cost of taking at least one more observation and
continuing the test. For instance, when � = �1, we calculate the expected cost of acceptance as a
function of the prior probabilities and decision costs. If we take another observation, then a dead
mutant leads to accepting the sample, incurring a decision cost (W12), and a live mutant will take
us to a point where we either continue the test or reject immediately, incurring a decision cost
(W21). We determine �1 to be that value for which these two costs of accepting immediately and of
taking one more observation to continue the test, if necessary, are equal. It is noted, in general, that
the di�erence between the expected cost of an immediate decision and expected cost of continuing
the test should decrease as the sample (mutant) size increases considerably.

As a result of the optimization procedure, [18] i.e., equating the expected cost of an immediate
decision to the expected cost of at least one more mutant inspected, we have the following equations
as a result:

For � = (�2=�1) < (p1=p2),

�1 =
W12p2R(p2=p1; (�2p2)=(�1p1); p2)� c� p2cS(p2=p1; (�2p2)=(�1p1); p2)

W21p1R(p2=p1; (�2p2)=(�1p1); p1) + c+ p1cS(p2=p1; (�2p2)=(�1p1); p1)
; (10)

and for � =
�2
�1

>
p1
p2
; �1 =

W12p2 � c

W21 + c
(11)

Similary,

� =
�2
�1

<
q1
q2
; �1 =

W12q2A(q2=(�q1); q2=q1; p2) + c+ q2cS(q2=(�q1); q2=q1; p2)

W21q1A(q2=(�q1); q2=q1; q1)� c� q1cS(q2=(�q1); q2=q1; p1)
(12)

7 Barnard's Score Notation for a Binomial SPRT

The following derivation is from [18]:
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According to Barnard [3], any sequential probability ratio test procedure for a binomial popu-
lation can be reduced (without much loss in accuracy) to a scoring procedure as follows: Take the
logarithms on both sides of (9) and divide throughout by log(q1=q2):

logL

log(q1q2)
< X � Y

log(p2=p1)

log(q1=q2)
<

logU

log(q1=q2)
(13)

and then de�ne:

H1 =
logU

log(q1=q2)
(14)

H2 =
logL

log(q1=q2)
(15)

If we round o� b,H1 andH2 to the nearest integers, the sequential likelihood ratio test procedure
reduces to the following scoring scheme: Start with a score H2, and add one to the score for each
dead mutant observed, and subtract b for each live mutant found. Reject the sample (assume the
test data is not strong enough) if the score falls to zero or less, and accept the sample if the score
reaches 2H = H1 +H2.

As a procedure for calculation, in practice, we shall �rst have to �x values for a1, a2, p1, p2,
W12, W21, and c. The quantity b can then be calculated by

b =
log(p2=p1)

log(q1=q2)
(16)

Then calculate

2H =
� log(�)

log(q1=q2)
(17)

Where � can be estimated by calculating the interval given by:

c2

[w12(q1 � q2)� c][W21(q1 � q2)� c]
< � < 1 (18)

From experience, it appears that the lower limit, or any number a little higher than the lower
limit, can serve as a good �rst guess for � in order to start the iteration. Formulae for the average
sample size and acceptance probability of such a scheme have been given by Burman [7] and
Anscombe [1]. They are exact if b, H1 and H2 are integers. The error involved in rounding o� is
small if b is greater than 10, and this is often the case in practice. If we replace A(U; L; p) etc., as
de�ned earlier, by A(H1; H2; p) etc., in score notation, we get, if � < p1=p2:

� = F (�) =
W12q2A(2H � 1; 1; p2) + c+ q2cS(2H � 1; 1; p2)

W21q1A(2H � 1; 1; p1)� c� q1cS(2H � 1; 1; p2)
(19)

�
W21p1R(b; 2H � b; p1) + c+ p1cS(b; 2H � b; p1)

W12p2R(b; 2H � b; p2)� c� p2cS(b; 2H � b; p2)

If � > (p1)=(p2), we get

� = F1(�) =
[W12q2A(2H � 1; 1; p2) + c+ q2cS(2H � 1; 1; p2)][W21p1 + c]

[W21q1A(2H � 1; 1; p1)� c� q1cS(2H � 1; 1; p1)][W12p2 � c]
(20)
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In both cases, b and 2H are as denoted in (16) and (17).

To solve equations (19) and (20), we start with some guessed values for � and proceed with the
iteration until we get the same value of �. Hence, when we get a value that gives rise to the same
value of 2H as was used in the previous iteration, we stop and take that as our solution. Once � is
obtained, we calculate �1 and �2 from equations (10) and (12) or (11) and (12).

Wald, Barnard and Bartlett [20, 3, 4] have given simple asymptotic formulae for the chance of
acceptance and average sample size of an open scheme. Setting X = p(b+ 1) we consider the limit
p! 0 with X constant. Wald's formula for the chance of acceptance then becomes

A =
exp(R2T )� 1

exp(R2T )� exp(�R1T )
(21)

where

X =
T

(exp(T )� 1)
; R1 =

H1

(b+ 1)
; andR2 =

H2

(b+ 2)

Barnard and Bartlett's formula lead to the same result except that X is replaced by X =
2=(T + 2), which is equivalent to the earlier X formula when X is near 1. Wald and Bartlett [4, 19]
give a formula for the average sample size S as de�ned by:

S

b+ 1
=

R1P �R2(1� P )

1�X
(22)

provided X 6= 1, while for X = 1
S

b+ 1
= R1R2 (23)

as p! 0, S and (b+ 1)!1, and their ratio tends to the limit shown.

8 Illustrative Examples as Applied to Mutation

To illustrate this method, we applied it to the trityp program, �rst presented in [15]. This program
takes as input three integers representing the length of the sides of a triangle, and then determines
whether sides de�ne scalene, isosceles, equilateral, or illegal. This program was chosen because of
its widespread use in the testing literature, and because of our familiarity with it in other work
(e.g., [13] and [16]).

The routine contains 30 lines of Fortran-77 code. TheMothramutation environment generates
951 mutants for this program, 107 of which are equivalent (leaving 844 non-equivalent). The
smallest test set we know of that can kill 100% of non-equivalent mutants has 27 test cases.

Our proposed most economical sequential test method is as follows:

1. Initialization. Set Sum = H2. Set T = ;, where T is the set of test cases generated so far.
Generate the non-equivalent mutants,M, for the program. Set H = ;, where H is a holding
set for mutants. Go to step 2.

2. Select a mutant m 2 M at random. M =M�m. Go to step 3.

10



3. Executem against t; 8t 2 T . Ifm is killed, remove it fromM and go to step 4, else H  H+m
and go to step 5.

4. Sum = Sum+ 1 If Sum >= 2H accept the test set and stop, else go to step 2.

5. Sum = Sum� b. If Sum > 0 go to step 2, else go to step 6.

6. Develop a new test case, � that kills the current mutant, m. Set T  T + � . Go to step 7.

7. 8m 2 H execute m against � . If m is killed, set H  H �m, set Sum = Sum+ b + 1. If
Sum >= 2H , accept the test set and stop. Otherwise, go to step 2.

In short, we are adding test cases to T until we are able to kill a total of H1 mutants, selected
at random, when executed against the cases in T . After this is accomplished, we stop, and then
use T to test the original, non-mutated code.

For our tests, we used the prior probabilities and costs developed for the examples in [18].
The following tables illustrate our results. The �rst column in each table indicates the number of
mutants selected in step 2 before it was necessary to generate a new testcase. The second column
indicates the number of live mutants after executing all mutants against the test cases accumulated
in T to that point.

In each of the following tables, the �rst column represents the number of test cases that are in
the set T at that point in the test. The second column represents the number of mutants executed
(as in step 3) before we stop to accept the test set or generate a new test case to add to T . The
third column indicates the number of non-equivalent mutants that would still be considered live
if they all were executed against the test set T , as would be done in the deterministic method of
mutation testing.

8.1 Example 1

In this example,

a1 =
5

9
; a2 =

4

9
; p1 = 0:01; p2 = 0:10;W21 = 400;W12 = 500; and c = 1

The necessary calculations result in values of

H2 = 34; 2H = H1 +H2 = 68; b = 24

Thus, the test set was accepted after generating 14 test cases when Sum, as described in section
8, reached 2H = 68, or exceeded it. These 14 test cases form a test set that kills over 93% of the
live mutants using the deterministic approach, and that is acceptable at the level of 99% (i.e.,
100(1� p1)%) with our proposed testing approach.

Note that in the worst case, the number of mutant executions required is given by:

0 � 1 + 1 � 3 + 2 � 5 + 3 � 6 + : : :+ 13 � 16 + 1 = 1116

as compared to the deterministic case requiring

0 � 844 + 1 � 692 + : : :+ 13 � 61 = 5361
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8.2 Example 2

In this example,

a1 = 0:5981; a2 = 0:4019; p1 = 0:008663; p2 = 0:041856;W21 = 143:6;W12 = 266; c = 1

The necessary calculations result in values of

H2 = 12; 2H = H1 +H2 = 44; and b = 46

In this case, we accept the test set after generating 11 test cases that kill 88.4% of the live mu-
tants using the deterministic approach, and is acceptable at the level of 99.13% with our suggested
approach.

9 Summary Discussion and Conclusions

As Barnard [3] has remarked, Wald's sequential procedure for testing the fraction defective of a
batch of articles can be conveniently expressed in terms of a scoring system, as follows: [18]

Sample the batch by drawing articles randomly from it one by one. Add 1 for a
non-defective article, �b for a defective. With starting score zero, accept the batch if
the score reaches or exceeds H1, reject it if the score falls to or below H2. Continue
sampling until one or another decision is reached. Or, identically, sample the batch,
count +1 for a non-defective item, �b for a defective. With starting score H2, accept
the batch if the score reaches 2H , reject it if the score falls to zero or less.

In our mutation-oriented testing, the acceptance and rejection is of a test data set necessary
to thoroughly test a piece of software. Once we accept a test set, we execute the original program
against it to see if the software is correct. If we reject a test data set, we continue to augment the
test data set until it is accepted.

When compared with the traditional method of mutation testing, this approach results in a
great reduction in the number of executions required to judge a test set as adequate. Using the
deterministic method may result in literally millions of executions as each mutant is executed
against each test case, as the number of mutants is on order of the number of lines in the program,
squared. However, our method may result in only a few hundred or thousand mutant executions
to achieve a test set that can be used to test the software to the same level of con�dence.

For instance, in our �rst example, the statistical sequential method we have described required
no more than 1116 mutant executions, where the deterministic method required 5361 executions.
Furthermore, our proposed SPRT resulted in a test data set with a statistically-determined prob-
ability of 99% adequacy, while the deterministic method resulted in a measure of only 93% of the
mutants killed. Similarly, in example 2, our method required no more than 218 mutant executions
compared to the 4196 executions required on the same test data for the deterministic case. Our
method provided a test set 99.13% accurate (assuming correct priors and cost factors), while the
deterministic method applied to the same test set only provides a measure of 88.4% adequacy.

12



We believe that the e�ciency of our sequential approach, coupled with power of mutation
testing, provides a cost-e�ective form of generating reliable test sets. Our proposed statistical
sequential method requires only that we be able to establish costs of faulty acceptance, rejection,
and sampling (mutant selection and test case generation), and prior testing probabilities|all of
which are possible to do in most production environments.
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Cases in T Mutants Examined Total Live Mutants

0 1 844
1 3 692
2 5 627
3 6 538
4 7 510
5 8 453
6 11 433
7 27 345
8 32 282
9 35 199
10 60 106
11 90 93
12 108 71
13 116 61
14 accept 53

Cases in T Mutants Examined Total Live Mutants

0 1 844
1 2 692
2 3 575
3 5 538
4 6 451
5 7 423
6 8 369
7 20 351
8 24 337
9 27 243
10 32 217
11 accept 98
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