
A PATTERN MATCHING MODEL FOR MISUSE

INTRUSION DETECTION
�

Sandeep Kumar Eugene H. Spa�ord

The COAST Project

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907{1398

fkumar,spafg@cs.purdue.edu

Keywords: intrusion detection, misuse, anomaly.

Abstract

This paper describes a generic model of matching that can be usefully applied to misuse
intrusion detection. The model is based on Colored Petri Nets. Guards de�ne the context in
which signatures are matched. The notion of start and �nal states, and paths between them
de�ne the set of event sequences matched by the net. Partial order matching can also be speci�ed
in this model. The main bene�ts of the model are its generality, portability and 
exibility.

1 Introduction

Computer break-ins are becoming increasingly frequent and their detection is increasingly impor-
tant. Break-ins make the data residing on computer systems vulnerable to theft and corruption.
Compromised sites can also be used to launch further attacks, thus achieving another level of indi-
rection for further break-ins. A majority of break-ins, however, are the result of a small number of
known attacks, as evidenced by reports from response teams (e.g. CERT). Automating detection of
these attacks should therefore result in the detection of a signi�cant number of break-in attempts.

Intrusion Detection is primarily concerned with the detection of illegal activities and acquisitions
of privileges that cannot be detected with information 
ow and access control models. Examples of
these include software engineering 
aws in programs that allow cross privilege domain executions,
insider abuse and failure of authentication procedures. Intrusion Detection models therefore do not
directly overlap with traditional security models [11] which are primarily concerned with modeling
information 
ow in a computer system to ensure that subjects are never able to access unauthorized
information, or with modeling access control mechansims to prevent unauthorized access to objects.

Current approaches to detecting intrusions can be broadly classi�ed into two categories: Anomaly
Detection and Misuse Detection [20]. Anomaly Detection is based on the premise that intrusive
activity often manifests itself as an abnormality. The usual approach here is to devise metrics
indicative of intrusive activity, and detect statistically large variances on these metrics. Examples
might be an unusually high number of network connections within an interval of time, unusually

�This work was funded by the Division of INFOSEC Computer Science, Department of Defense.

1



A Pattern Matching Model for Misuse Intrusion Detection

high CPU activity, or use of peripheral devices not normally used. This approach has been studied
extensively and implemented in a large number of systems [19, 18, 12, 14, 5, 8]. It attempts to
quantify the acceptable behavior and thus identify abnormal behavior as intrusive.

The other technique of detecting intrusions, misuse detection, attempts to encode knowledge about
attacks as well de�ned patterns and monitors for the occurrence of these patterns. For example,
exploitation of the fingerd and sendmail bugs used in the Internet Worm attack [21] would be in
this category. This technique speci�cally represents knowledge about unacceptable behavior and
attempts to detect its occurrence.

This paper proposes a variation of one approach to misuse detection, state transition analysis,
by using pattern matching to detect system attacks. Knowledge about attacks is represented
as specialized graphs. These graphs are an adaptation of Colored Petri Nets [9] with guards
representing signature context and vertices representing system states. The graph represents the
transition of system states along paths that lead to intruded states. Patterns may have user-
speci�able actions associated with them that are executed when patterns are matched. The model
provides the ability to specify partial orders and subsumes matching of sequences and regular
expressions. Patterns also have pre- and post-conditions associated with them that must be satis�ed
before and after the match. Patterns also may include invariants to specify that a condition is or
is not satis�ed while the pattern is being matched.

There are several bene�ts to our approach of using a generic model of matching. A signi�cant bene�t
is the clean separation of the various components comprising a generic misuse detector. With our
approach to designing a generic misuse detector, it can be viewed as three basic abstractions. This
enables generic solutions to be substituted for each abstraction without changing the interfaces
between the abstractions of the model. These abstractions are:

The Information Layer. This encapsulates the audit trail and provides a low-level data inter-
face to the monitored computer system.

The Signature Layer. This provides for a system-independent internal representation of sig-
natures and a system-independent virtual machine to represent the signature context.

The Matching Engine. This encapsulates the method used to match the patterns. It makes
the system independent of any particular choice of matching algorithms. It also allows simple
substitution of newer or more powerful mechanisms as they become available.

Furthermore, a standardization of the model of matching signatures permits several external rep-
resentations of signatures to exist, each facilitating the representation of certain type of signature
constructs. Other bene�ts of the model include its extensibility and portability to di�erent event
models; its ability to assign priority to signatures and the ability to dynamically add signatures in
the midst of matching [sec. 4].

Our model is generic and does not assume any characteristics of the underlying events against which
matching is done or the domain of solution. It provides a mechanism on which matching solutions
can be built. For example, the same model applies for the case of monitoring network packet 
ow,
or for monitoring speci�c patterns in logs generated by general purpose logging utilities. The input
events in any of these problem domains can be canonicalized and used as input to our model of
matching. Speci�c instantiations can be made of the model as appropriate to the problem. For
example, a specialized version could be created for matching intrusion signatures in the context of
UNIX audit trails.



A Pattern Matching Model for Misuse Intrusion Detection

2 Primary Approaches To Misuse Detection

Misuse detection might be implemented by one the following techniques:

1. Expert Systems, which code knowledge about attacks as if-then implication rules.

2. Model Based Reasoning Systems, which combine models of misuse with evidential reason-
ing to support conclusions about the occurrence of a misuse.

3. State Transition Analysis, which represents attacks as a sequence of state transitions of
the monitored system [16, 6].

4. Key Stroke Monitoring, which uses user key strokes to determine the occurrence of an
attack.

These methods are summarized in the following sections.

2.1 Expert Systems

An expert system is de�ned in [7] as a computing system capable of representing and reasoning
about some knowledge-rich domain with a view to solving problems and giving advice. Expert
system detectors code knowledge about attacks as if-then implication rules. Rules specify the
conditions requisite for an attack in their if part. When all the conditions on the left side of a
rule are satis�ed, the actions on the right side of the rule are performed which may trigger the
�ring of more rules or conclude the occurrence of an intrusion. The main advantage in formulating
if-then implication rules is the separation of control reasoning from the formulation of the problem
solution. Its chief use in misuse detection is to symbolically deduce the occurrence of an intrusion
based on the available data.

The primary disadvantage of using expert systems is that working memory elements (the fact
base) that match the left sides of productions to determine eligible rules for �ring are essentially
sequence-less. It is di�cult to e�ciently specify an order in which to match facts within the natural
framework of expert system shells.1 Other problems include software engineering concerns with
the maintenance of the knowledge base [13] and the quality of the rules, which can be only as good
as the human devising them [13].

2.2 Model Based Systems

This approach was proposed in [4] and is a variation on misuse intrusion detection. It combines
models of misuse with evidential reasoning to support conclusions about its occurrence. There is
a database of attack scenarios, where each scenario comprises a sequence of behaviors making up
the attack. At any moment the system is considering a subset of these attack scenarios as likely
ones being experienced by the system. It seeks to verify them by seeking information in the audit
trail to substantiate or refute the attack scenario (the anticipator). The anticipator generates the
next behavior to be veri�ed in the audit trail, based on the current active models, and passes these
behaviors to the planner. The planner determines how the hypothesized behavior will show up in
the audit data and translates it into a system dependent audit trail match. This mapping from
behavior to activity must be easily recognized in the audit trail, and must have a high likelihood
of appearing in the behavior.

As evidence for some scenarios accumulates, and decreases for others, the active models list is up-

1Even though facts are numbered consecutively in current expert system shells, introducing fact numbering con-
straints within rules to enforce an order makes the Rete match [3] procedure very ine�cient.



A Pattern Matching Model for Misuse Intrusion Detection

dated. The evidential reasoning calculus built into the system permits the update of the likelihood
of occurrence of the attack scenarios in the active models list.

The advantage of model based intrusion detection is its basis in a mathematically sound theory of
reasoning in the presence of uncertainty. The structuring of the planner provides independence of
representation of the underlying audit trail syntax. Furthermore, this approach has the potential
of reducing substantial amounts of processing per audit record. It would do this by monitoring for
coarser-grained events in the passive mode and then actively monitoring �ner-grained events when
those events are detected.

The disadvantage of model based intrusion detection is that it places additional burden on the
person creating the intrusion detection models to assign meaningful and accurate evidence numbers
to various parts of the graph representing the intrusion model. It is also not clear from the model
how behaviors can be compiled e�ciently in the planner and the e�ect this will have on the run time
e�ciency of the detector. This, however, is not a weakness of the model per se, but a consideration
for successful implementation.

2.3 State Transition Analysis

In this approach [16, 6] attacks are represented as a sequence of state transitions of the monitored
system. States in the attack pattern correspond to system states and have Boolean assertions
associated with them that must be satis�ed to transit to that state. Successive states are connected
by arcs that represent the events/conditions required for changing state. These conditions, or
signature actions, are not limited to a single audit trail event, but may be a complex speci�cation
of conditions.

2.4 Keystroke Monitoring

This technique uses user keystrokes to determine the occurrence of an attack. The primary means
is to pattern match for speci�c keystroke sequences indicative of an attack. The disadvantages
of this approach are the general unavailability of user typed keystrokes and the myriad ways of
expressing the same attack at the keystroke level. Furthermore, without a semantic analysis of the
contents, aliases can easily defeat this technique.

2.5 Summary Characterizing These Four Approaches

All four approaches to misuse detection encode and look for speci�c attacks and use matching in
some form to detect them. If an attack is regarded as a set of steps, expert system rules permit
the encoding of sequentiality (and other dependencies) between the steps. However, because of the
generality of the match procedure of ascertaining �rable rules, such dependencies are ine�cient
to match directly. Model based systems consider `models' of intrusion and seek to verify them
by looking for evidence to corroborate the model. This is done by using matching techniques
on the underlying event trail. State transition approaches can be construed as trying to match
the sequence of steps that lead a system to a compromised state. Each step in this sequence may,
however, require complex computation for determining its occurrence (typically using expert system
rules). Key stroke monitoring is the direct application of pattern matching to key stroke logs to
match for suspicious or undesirable patterns.



A Pattern Matching Model for Misuse Intrusion Detection

2.6 Bene�ts And Limitations Of Misuse Detection

A primary disadvantage of anomaly detection, the other major technique for intrusion detection,
is that statistical measures of user behavior can be gradually trained. Miscreants who know that
they are being monitored can train such systems over a length of time to the point where intrusive
behavior is considered normal. Misuse detection is immune to such training: if the signature for
an attack is carefully written, even major variations of the same basic attack scenario can be
detected. Moreover, the technique is simpler than anomaly detection. Within the framework of
misuse signatures, monitoring of system activity can be automated as well.

The primary disadvantage of this approach is that it looks only for known vulnerabilities, and is
of little use in detecting unknown future intrusions. However, we can look for known patterns of
abuse that might occur after a vulnerability is exploited; although the intrusion itself may not be
noted, the subsequent actions could be 
agged.

3 Intrusion Detection Using Pattern Matching

Our pattern matching is based on the notion of an event. Events are auditable changes in the state
of the system, or changes in the state of some part of the system. An event can represent a single
action by a user or system, or it can represent a series of actions resulting in a single, observable
record.

We further specify events as having tags. Generally, monitored events are tagged with data. In
particular, the time at which the event occurred is of special importance because of the monotonicity
properties of time. The events can have an arbitrary number (though usually a small number) of
tag �elds. The exact number and nature of the �elds is dependent on the type of the event.
Mathematically one can think of the events as being tuples with a special �eld indicating the type
of event. For example, one can think of the event a occurring at time t to be the tuple (a; t), where
a denotes the type of the event.

A fundamental requirement of applying pattern matching to intrusion detection is that matching be
done with follows semantics rather than immediately follows semantics. For example, with follows

semantics the pattern ab speci�es the occurrence of the event a followed by the occurrence of event
b. It does not represent a immediately followed by b with no intervening event. This means that
any two adjacent sub patterns within a pattern are implicitly separated by an arbitrary number
(possibly zero) of events of any type. This assumption is appropriate in current systems: audit trail
generation and modern user interfaces allow users to login simultaneously through several windows
thereby generating overlapped entries in the audit trail.

Using follows semantics makes the �eld of discrete approximate pattern matching relevant to intru-
sion detection. Three characteristics determine the kinds of theoretical bounds that can be placed
on the matching solution: 1) whether matching is o�-line or online 2) whether signatures can be
dynamically added or deleted as matching proceeds and 3) whether all matches of the pattern in
the event stream are desired or whether �nding a single match is su�cient.

Results in approximately matching various classes of patterns are summarized in �g. 1. These time
bounds hold for arbitrary values of deletion, insertion and mismatch costs, and are not optimized
for the requirements of misuse intrusion detection. The results are restricted to online matching
because we are primarily concerned with real time intrusion detection. RE stands for regular
expressions and sequence refers to a chain of events. The column match denotes the type of match
determined by the corresponding algorithm. An entry of \all endpts" denotes that the algorithm



A Pattern Matching Model for Misuse Intrusion Detection

Pattern Time Space Preproc Match Reference Comment

Sequence O(mn) O(m) O(1) all endpts [22] Using dynamic programming.
Sequence O(mn) O(mn) O(1) all [22] Using dynamic programminga .
Sequence O(n) O(m) O(1) all endpts [1, 23] Pattern �ts within a word of the

computer. Small integer values of
costs.

RE O(mn) O(m) O(m) all endpts [15] Using dynamic programming.
RE O(mn) O(mn) O(m) all [15] Using dynamic programminga.

aDoes not include the time for enumerating all matches, which may be exponential.

Figure 1: Some Results from Pattern Matching Applicable to Misuse Detection

detects all positions in the input where a match with the pattern ends, but cannot reconstruct
the match sequence, \all" denotes that the algorithm can also construct the match. Finding all
matches of a pattern in the input is an all-paths source-to-sink problem and is computationally
hard.

While approximate pattern matching is useful in misuse detection, the general problem cannot be
reasonably solved by current pattern matching techniques. For example, it requires matching of
partial orders, context-free and context-sensitive structures, and matching in the presence of time,
a notion inherent in audit trail generation and very important in specifying intrusions.

After studying common numerous UNIX vulnerability descriptions from such sources as the CERT
security advisories, and those detected by the COPS [2] and TIGER [17] tools, we noted a temporally-
related partitioning. We were able to classify intrusion attacks on UNIX as follows:

1. Existence. The fact that something(s) ever existed is su�cient to detect the intrusion attempt.
Simple existence can often be found by static scanning of the �le system. Examples include
searching for altered permissions or certain special �les.

2. Sequence. The fact that several things happened in strict sequence is su�cient to specify the
intrusion.

3. Partial order. Several events are de�ned in a partial order, for example as in �g. 2.

4. Duration. This requires that something(s) existed or happened for not more than nor less than
a certain interval of time.

5. Interval. Things happened an exact (plus or minus clock accuracy) interval apart. This is
speci�ed by the conditions that an event occur no earlier and no later than x units of time
after another event.

We believe that the vast majority of known intrusion patterns fall into categories 1 and 2. This
classi�cation is not strictly a hierarchy as characteristics simple to match at lower levels of the
classi�cation become intractable at upper levels. These classes can also be further subdivided into
�ner categories; details can be found in [10].

3.1 An Overview of Our Model of Matching

We examined various regular methods of representing and matching our attack signatures. Regular
expressions can represent only the simplest types of attacks. Context-free and attribute grammars
are not easy to extend to approximate matching and do not lend themselves well to a graphical



A Pattern Matching Model for Misuse Intrusion Detection

write

this[PID] != 0 &&
true_name(this[OBJ]) = 

true_name("/usr/spool/mail/root") 
&&

FILE = this[OBJ]

chmod exec
this[OBJ] = FILE

true_name(this[PROG]) = 
true_name("/usr/ucb/mail") && 
this[ARGS] =~ "\\<root\\>"

cp /bin/sh /usr/spool/mail/root
chmod 4755 /usr/spool/mail/root
ouch x

mail root < x
/usr/spool/mail/root

s1 t1 t2s2 s3

stat

utim
e

s4

t4

s5

t5

s6
t7 s7

Invariant: same_uid

F = true_nam
e(this[OBJ]

Figure 2: Representing a Partial Order of Events

representation. Regular expressions and context-free grammars do not permit matching to be
conditional on the value of speci�ed expressions. Attribute grammars allow conditional matching
only in an indirect way. We settled on basing our model of matching on an extension of Colored
Petri Nets [9] as they su�er none of these problems.

We refer to each signature represented as an instantiation of a Colored Petri Automaton (CPA).
The notion of one or more start states and a unique �nal state de�nes the set of strings matched by
the CPA. Matching begins with one token in each initial state. The pattern is considered matched
for each token that reaches the �nal state. Along the path to the �nal state tokens can merge or be
duplicated. Partial orders can be written with each trunk of the partial order starting at a di�erent
start state. Tokens that are merged carry the merge information with them so the entire merge
path is stored.

Patterns are internally stored for matching as CPAs. Externally, a language can be designed
to represent signatures in a more programmer-natural framework, and programs in the language
compiled to this internal representation. The main di�erences between our model and CP-Nets are
the lack of concurrency in our model, absence of local transition variables, the notion of start and
�nal states, and the notion of pre- and post-conditions and invariants associated with patterns.
Moreover, nets in our model are not bipartite, unlike CP-Nets.

Our model is generic and applicable to any well-de�ned format of input events such as audit trail
records, network packets, or other abstractions. Our examples here, however, are taken from the
domain of misuse detection in the UNIX environment using audit trails as input.

Consider, as an example, the attack scenario in �gure 2 [6]. Its CPA is translated verbatim from
the attack scenario for purposes of illustration only. s1 and s4 are the initial states of the CPA,
and s7 is its �nal state. A CPA requires the speci�cation of � 1 initial states (each initial state
represents a trunk of the partial order) and exactly one �nal state. The circles represent states and
the thick bars the transitions. At the start of the match, a token is placed in each initial state.



A Pattern Matching Model for Misuse Intrusion Detection

Each state may contain an arbitrary number of tokens.

A CPA also has associated with it a set of variables. Assignment to these variables is equivalent
to uni�cation. Each token maintains its own local copy of these variables because each token can
make its own variable \bindings" as it 
ows to the �nal state. In CP-Net terminology, each token is
colored, and its color can be thought of as an n-tuple of strings, where the pattern has n variables.

The CPA also contains a set of directed arcs that connect states to other states and transitions.
The arcs which connect places to other places are � transitions along which tokens 
ow nonde-
terministically without being triggered by an event. Each transition is associated with an event
type, called its label, which must occur in the input event stream before the transition will �re.
In �g. 2 transition t1 is labeled with the event write, t4 is labeled with the event stat and so on.
Nondeterminism can be speci�ed by labeling more than one outgoing transition of a state with the
same label. There is, however, no concurrency in a CPA: an event can �re at most one transition.
A transition is said to be enabled if all its input states contain at least one token.

Optional expressions, or guards, can be placed at transitions. These expressions permit assignment
to the CPA variables. Example of these assignments include assignment of values to matched event
�elds; evaluation of conditions involving equality, <, or >; and calling built-in and user de�ned
functions. Guards are Boolean expressions which evaluate to true or false. this is a special operator
which is instantiated to the most recent event. It may be empty in the case of � transitions. It
provides a hook into the event matched at a particular transition. Guards are evaluated in the
context of the event which matches the transition label and the set of consistent tokens which
enable the transition. Tokens are consistent when their variable bindings unify. The set of tokens
are uni�ed before being passed to the guards for evaluation.

For example, in order for transition t7 to �re, there must be at least 1 token in each of states s3
and s6; the enabling pair of tokens (one from s3, the other from s6) must have consistently bound
(uni�able) pattern variables; and the uni�ed token and the event of type exec together must satisfy
the guard at t7. A transition �res if it is enabled and an event of the same type as its label occurs
that satis�es the guard at the transition. When a transition �res, all the input tokens that have
caused the transition to �re are merged to one token, and copies of this merged token are placed
in each output place of the transition.

The process of merging resolves con
icts in bindings (i.e. makes sure that token bindings unify)
between tokens to be merged and stores a complete description of the path that each token traversed
in getting to the transition. Thus a token not only represents binding, but also the composite path
that it encountered on its path to the current state. The sequence of events matched by a CPA
is the sequence of events (or partial order) encountered at each transition by the token that has
reached the �nal state.

A CPA is also associated with a pre-condition, a post-condition, and an invariant expression. These
are similar to guards that must evaluate true to be successful. Patterns that have no transitions
(e.g., verifying that root's .rhosts �le is not world writable) can be speci�ed using pre-conditions to
an empty pattern. Post-conditions are provided for symmetry and to allow the recursive invocation
of the same pattern.

The reason for having invariants associated with CPAs is more subtle. It seems syntactically
inconsistent to us to specify as part of patterns that they must not occur while another pattern
is being matched. That is, negative pattern speci�cation in a CPA unnecessarily clutters the
description of the pattern. The other reason is that the semantics of some invariants cannot be
easily absorbed in the framework of transitions and guard expressions. It is more e�cient to provide



A Pattern Matching Model for Misuse Intrusion Detection

them as primitives in the matching model than to attempt to subsume them within the framework
of matching.

As mentioned earlier, our model of matching is generic. It can easily be instantiated for misuse
detection for a system running the UNIX environment, for example. This would involve de�ning
the primitives supported in guard expressions. It might also include coding �le test operations,
set manipulation functions, system interaction hooks, and other operations. The set of invariant
primitives supported in the instantiated model must also be de�ned. The overall structure of
matching remains unchanged.

4 Analysis Of Our Matching Model

There are several di�culties in intrusion detection using pattern matching. The dominant one is
the sheer rate at which the data generated by modern processors must be matched. We have some
con�dence that a system as described in this paper can operate at a speed su�cient to operate in
near real time. Furthermore, because state is saved in the tokens and their tag �elds, there is no
need to save (or re-process) extensive logs of the system.

The other major problem is the nature of the matching itself. An attacker may perform several
actions under di�erent user identities, and at di�erent times, ultimately leading to a system com-
promise. Because an intrusion signature speci�cation, by its nature, requires the possibility of an
arbitrary number of intervening events between successive events of the signature, and because we
are generally interested in the �rst (or all) occurrence(s) of the signature, there can be several par-
tial matches of each signature at any given moment. This can require substantial overhead in time
and space to track each partial match. In some scenarios, there may be weeks between events. In
others, di�erent portions of an attack scenario can be executed over several login sessions and the
system is then required to keep track of the partial matches over login sessions. In other cases the
signature may specify arbitrary permutations of sub-patterns comprising the pattern thus making
the recognition problem much more di�cult.

The complexity of matching in our model increases rapidly with increasing complexity of signatures.
At the simplest end are patterns without guards, for which algorithms from discrete approximate
matching are applicable [�g. 1]. The introduction of guards and variables makes the complexity of
the matching problem exponential in the size of the CPA if the description of guards is included
in its size. Partial order matching takes super-exponential time. Matching can be improved in
some cases by exploiting the monotonic nature of event �elds, like the time stamp of the event.
Evaluating guards can be optimized by de�ning a virtual machine for their evaluation. By breaking
the guard expressions into sequences of simpler instructions, common subexpression elimination
can be performed to reduce the size of the sequence. Such elimination can be done across all the
patterns. All these results and optimizations are described in [10].

Our model has several important advantages. It is very portable, in the sense that intrusion signa-
tures can be moved across sites without rewriting to accommodate �ne di�erences in each vendor's
implementation. Signatures can also be transparently moved to systems with somewhat di�erent
policies and ratings. An abstract audit record de�nition and a standard de�nition of a virtual
machine to represent guards ensures that patterns pre-compiled to an intermediate representation
can be moved across systems with minimal overhead.

Signatures can be dynamically added in the matching engine while maintaining the partial matches
of signatures already present in it. The only disadvantage of doing this is that some optimizations,
like common subexpression elimination of guards, may not be done for subsequently added patterns



A Pattern Matching Model for Misuse Intrusion Detection

with respect to patterns already compiled in the engine. Actions can also be associated with
patterns by incorporating them as expressions in the post conditions.

Signatures can be prioritized by considering each token as a thread of control. Each thread then
fetches events from an event manager and acts on them. By prioritizing certain threads, patterns
can be prioritized for matching.

5 Conclusions

The paper outlined a pattern matching approach to misuse intrusion detection. It proposed a
generic model of matching based on CP-Nets that can be adapted to di�erent problem domains.
We used misuse detection using audit trails under UNIX as an example to illustrate the usefulness
and applicability of this approach.

The model is interesting and appealing from a theoretical standpoint. However, its true test is an
evaluation of its implementation running under \live" conditions. We will implement this model
and derive experimental results in the near future. Comparative performance results with other
approaches will be di�cult because of the lack of standardized benchmarking vulnerabilities and
the unavailabilty of such data for other approaches. We hope that our prototype implementation
and benchmarking results will provide the necessary �rst step in this direction.

References

[1] R. A. Baeza-Yates and G. H. Gonnet. A New Approach to Text Searching. In Proceedings of the
12th Annual ACM-SIGIR Conference on Information Retrieval, pages 168{175, Cambridge,
MA, June 1989.

[2] Daniel Farmer and Eugene H. Spa�ord. The COPS Security Checker System. In Proceedings

of the Summer Usenix Conference, pages 165{170, June 1990.

[3] Charles L. Forgy. RETE: A Fast Algorithm for the Many Pattern/ManyObject Pattern Match
Problem. In Arti�cial Intelligence, volume 19. 1982.

[4] T. D. Garvey and T. F. Lunt. Model based Intrusion Detection. In Proceedings of the 14th

National Computer Security Conference, pages 372{385, October 1991.

[5] L. T. Heberlein, K. N. Levitt, and B. Mukherjee. A Method To Detect Intrusive Activity in a
Networked Environment. In Proceedings of the 14th National Computer Security Conference,
pages 362{371, October 1991.

[6] Koral Ilgun. USTAT: A Real-Time Intrusion Detection System for UNIX. Master's thesis,
Computer Science Department, University of California, Santa Barbara, July 1992.

[7] Peter Jackson. Introduction to Expert Systems. International Computer Science Series. Addison
Wesley, 1986.

[8] R. Jagannathan, Teresa Lunt, Debra Anderson, Chris Dodd, Fred Gilham, Caveh Jalali,
Hal Javitz, Peter Neumann, Ann Tamaru, and Alfonso Valdes. System Design Docu-
ment: Next-Generation Intrusion Detection Expert System (NIDES). Technical Report
A007/A008/A009/A011/A012/A014, SRI International, March 1993.

[9] Kurt Jensen. Coloured Petri Nets { Basic Concepts I. Springer Verlag, 1992.



A Pattern Matching Model for Misuse Intrusion Detection

[10] Sandeep Kumar and Eugene Spa�ord. An Application of Pattern Matching in Intrusion Detec-
tion. Technical Report 94-013, Purdue University, Department of Computer Sciences, March
1994.

[11] Carl E. Landwehr. Formal Models for Computer Security. ACM Computing Surveys,
13(3):247{278, September 1981.

[12] G. E. Liepins and H. S. Vaccaro. Anomaly Detection: Purpose and Framework. In Proceedings

of the 12th National Computer Security Conference, pages 495{504, October 1989.

[13] Teresa F Lunt. A Survey of Intrusion Detection Techniques. Computers & Security, 12(4):405{
418, June 1993.

[14] Teresa F. Lunt, R. Jagannathan, Rosanna Lee, Alan Whitehurst, and Sherry Listgarten.
Knowledge based Intrusion Detection. In Proceedings of the Annual AI Systems in Government

Conference, Washington, DC, March 1989.

[15] Eugene W. Myers and Webb Miller. Approximate Matching of Regular Expressions. In Bull.

Math. Biol., volume 51, pages 5{37, 1989.

[16] Phillip A. Porras and Richard A. Kemmerer. Penetration State Transition Analysis { A
Rule-Based Intrusion Detection Approach. In Eighth Annual Computer Security Applications

Conference, pages 220{229. IEEE Computer Society press, IEEE Computer Society press,
November 30 { December 4 1992.

[17] David R. Sa�ord, Douglas L. Schales, and David K. Hess. The TAMU security package: An
outgoing response to internet intruders in an academic environment. In Proceedings of the

Fourth USENIX Security Symposium. USENIX Association, 1993.

[18] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert Systems in Intrusion De-
tection: A Case Study. In Proceedings of the 11th National Computer Security Conference,
October 1988.

[19] Stephen E. Smaha. Haystack: An Intrusion Detection System. In Fourth Aerospace Computer

Security Applications Conference, pages 37{44, Tracor Applied Science Inc., Austin, TX, Dec
1988.

[20] Stephen E. Smaha. Tools For Misuse Detection. In Proceedings of ISSA '93, Crystal City, VA,
April 1993.

[21] Eugene Spa�ord. The Internet Worm Report. Technical Report 823, Purdue University,
February 1990.

[22] Robert A. Wagner and Michael J. Fischer. The String-to-String Correction Problem. In
Journal of the ACM, volume 21, pages 168{178, january 1974.

[23] Sun Wu and Udi Manber. Fast Text Searching With Errors. Technical Report TR 91-11,
University of Arizona, Department of Computer Science, 1991.


