
Support for Implementing Scheduling

Algorithms Using messiahs
�

Steve J. Chapin Eugene H. Spa�ord

Dept. of Math. & Computer Science Dept. of Computer Sciences

Kent State University Purdue University

Kent, OH 44242-0001 West Lafayette, IN 47907{1398

sjc@cs.kent.edu spaf@cs.purdue.edu

Abstract

The messiahs project is investigating mechanisms that support task placement in heteroge-
neous, distributed, autonomous systems. messiahs provides a substrate on which scheduling
algorithms can be implemented. These mechanisms were designed to support diverse task
placement and load balancing algorithms.

As part of this work, we have constructed an interface layer to the underlying mechanisms.
This includes the messiahs Interface Language (MIL) and a library of function calls for
constructing distributed schedulers. This paper gives an overview of messiahs, describes
two sample interface layers in detail, and gives example implementations of well-known
algorithms from the literature built using these layers.

1 Introduction

Recent initiatives in high-speed, heterogeneous computing have spurred renewed interest in
large-scale distributed systems, and the desire for better utilization of existing resources has
contributed to this movement. A typical departmental computing environment already has
a substantial investment in computing equipment, including dozens or hundreds of worksta-
tions. Studies have shown that the utilization of this equipment can be as low as 30% of
capacity [1, 2].

A solution to this problem is to conglomerate the separate processors into a distributed
system, and to recursively join the distributed systems into larger systems to further expand
the computational power of the whole. Large-scale distributed systems can have a combined
computing power outperforming that of supercomputers [3].

A central element of e�ective utilization of such systems is task scheduling. Task schedul-
ing has two components: macro-scheduling (also de�ned as global scheduling [4] and task

�This work was sponsored in part by NASA GSRP grant number NGT 50919.

1

Steve J. Chapin 2

assignment [5]) and micro-scheduling (or local scheduling [4]). Macro-scheduling chooses
where to run a process, while micro-scheduling selects which eligible process to execute next
on a particular processor. All further uses of the term scheduling in this paper refer to
macro-scheduling.

The messiahs1 system [6, 7, 8, 9] provides a set of mechanisms that facilitate schedul-
ing in distributed, heterogeneous, autonomous systems. For our purposes, distributed, or
loosely-coupled, systems communicate via message passing rather than a shared memory
bus. Heterogeneous systems may have di�erent instruction set architectures, data formats,
and attached devices. All policy decisions in autonomous systems are made locally. Our
vision of distributed systems includes all three attributes, connecting machines of di�er-
ent architectures with individual administrative authorities via a communications network.
Section 2 gives precise de�nitions of autonomy and heterogeneity.

It is vital that a system for distributed computation support autonomy because of the
prevailing decentralization of computing resources. There is usually no longer a single,
authoritative controlling entity for the computers in a large organization. A scientist may
control a few of his own machines, and his department may have administrative control over
several such sets of machines. That department may be part of a regional site, which is, in
turn, part of a national organization. No single entity, from the scientist up to the national
organization, has complete control over all the computers it may wish to use. An example
of such usage is when two research organizations pool their resources to solve a common
problem.

Heterogeneity is important because it yields the most cost-e�ective and e�cient method
for performing some computations. A large computation might have certain pieces best
suited for execution on a supercomputer, while other parts might run best on a hypercube or
a graphics workstation. If the distributed system is restricted to only using one architecture,
the computation will su�er needless delay. In other cases, tasks such as text processing or
high-level language interpretation may be independent of any single architecture.

Our subsequent uses of the terms distributed system or system refer to a distributed,
autonomous, heterogeneous system, and node refers to an individual machine within an
autonomous system. Our de�nition of system includes a single machine, as well as two
homogeneous workstations communicating via a local-area network. This de�nition also
encompasses systems as complex as thousands of machines, including personal computers,
workstations, �le and computation servers, and supercomputers, spread among several re-
mote sites and connected by a wide-area network.

Within this distributed system, each individual system has its own policy for deciding
when to accept or remove tasks. The local administrator de�nes this policy, which is imple-
mented over the messiahs mechanisms via an interface layer. The interface layer provides a
virtual machine interface; the underlying mechanism can be presented to algorithm writers
in various ways. The language described here provides an interface that is easy to use, yet
powerful enough to implement a wide variety of scheduling algorithms. Primitive operations
are supplied to access system and task state information, manipulate tasks, and control the
behavior of the local system.

This approach is distinct from that taken in distributed programming systems such as

1
Mechanisms E�ecting Scheduling Support In Autonomous, Heterogeneous Systems

Steve J. Chapin 3

PVM [10] in which the program distribution is visible, and even forced upon, the programmer.
The messiahs approach more closely re
ects that taken in Condor [11], which schedules
processes invisibly for the programmer. Program distribution is under the control of the
autonomous system, and therefore the administrators, rather than the programmer.

Portions of this paper discuss implementation issues of the messiahs prototype. The
prototype was written in C for SunOS 4.1, and runs on both Sun 3 and Sun SPARC archi-
tectures.

2 The MESSIAHS Architecture

messiahs supports task placement in distributed systems with hierarchical structure based
on administrative domains, modeled by directed acyclic graphs. Multiple subordinate sys-
tems can be combined into an encapsulating system, yielding the hierarchical structure. The
nodes of the graph represent the autonomous systems, and edges indicate encapsulation. The
graph is directed downward; the edges are directed from encapsulating nodes, or parents, to
subordinate nodes, or children. Children of the same parent are siblings2. The neighbors of
a system are its children, parents, and siblings.

Figure 1 shows an example distributed system based on the Purdue University Computer
Sciences department. In the example, the Computer Sciences department contains two
administrative domains, Cypress and General. Cypress in turn encapsulates the research
machines belonging to the Cypress project, and General contains the general purpose servers
for the department. Bredbeddle and Percival are children of Cypress, and therefore are
siblings.

Each component system runs a scheduling module that implements the local scheduling
policy and manages administrative aspects of the system. These modules exchange data
sets describing the status of the systems. On demand, the modules also process scheduling
requests, which contain a description of the task for which the sender requests service.

Each module only exchanges status information with modules running on its neighbors.
Because of the hierarchical structure of the system, some nodes might be invisible to other
nodes. In the example system from �gure 1, Arthur receives information updates only
from Nyneve and General, and sees no information that can be directly related to Percival
or Bredbeddle. The capabilities of Bredbeddle and Percival are subsumed and combined
within General's state advertisement.

Individual systems enjoy execution autonomy, communication autonomy, design auton-
omy, and administrative autonomy as de�ned in [9, 13, 14]. Execution autonomy means
that each system decides whether it will honor a request to execute a task; each system also
has the right to revoke a task that it had previously accepted. Communication autonomy
means that each system decides the content and frequency of state advertisements, and what
other messages it sends. A system is not required to advertise all its capabilities, nor is it
required to respond to messages from other systems. Design autonomy gives the architects
of a system freedom to design and construct it without regard to existing systems, yielding
heterogeneous systems.

2These correspond to the formal de�nitions of father, son, and brother found in [12].

Steve J. Chapin 4

Administrative autonomy means that each system can have its own usage policies and
behavioral characteristics, independent of any others. In particular, a local system can run
in a manner counterproductive to a global optimum. In the usual case, scheduling modules
will cooperate, but administrators must be free to set their local policies or they will not
participate in the distributed system. Both [11] and [1] note that users are willing to execute
remote jobs on their workstations if the scheduling policy places higher priority on local jobs.

Figure 2 displays the structure of a messiahs scheduling module. The machine-dependent
layer handles raw data exchange between scheduling modules, collects the local state infor-
mation, and interacts with the task manipulation mechanisms speci�c to the local operating
system. The abstract data and task management layer provides an abstract interface for the
machine-dependent operations to the data reporting layer. The shaded layer, data reporting
and task manipulation, is the focus of this paper. This layer presents the user with the
interface to the messiahsmechanisms. The administrator supplies the topmost layer, which
embodies the scheduling policy for the system.

messiahs does not determine policy; the three layers provide mechanisms to implement
scheduling policies. The interface layer is the administrator's vehicle for expressing and
implementing the local policy through the messiahs mechanisms. Sections 4 and 5 describe
two interface layers, but we next examine the two lower levels upon which the interface layer
is built. This will provide a frame of reference for discussion of the interface layer.

2.1 The Machine-Dependent Layer

The machine-dependent layer provides the interface in table 1 to the management layer of
the module. The prototype does not implement those functions marked with a y. As noted
earlier, discussion of implementation details pertains to the prototype running on SunOS
4.1.

The functions divide into three main groups: data collection, message passing, and task
management. The data collection routines gather information that forms the system descrip-
tion for the local host. The message-passing routines implement abstract message exchange
between modules. The task management routines provide access to the underlying operating
system process manipulation primitives.

The data collection operations are implemented using the kvm open(), kvm read(),
kvm nlist(), and kvm close() routines that access kernel state in SunOS 4.1. The col-
lect process data() function collects information on the number of processes in the ready
queue, and the percentage of processor utilization. collect memory data() determines how
much of the physical memory is in use. collect disk data() �nds the amount of public free
space on a system, typically in the /tmp directory on SunOS. collect network data() deter-
mines the average round-trip time between a host and its neighboring systems within the
graph.

An alternative data collection implementation could use the rstat() call, which uses the
Remote Procedure Call (RPC) mechanisms of SunOS to query a daemon that monitors the
kernel state. However, the rstatd daemon does not provide information on physical memory
statistics or communication time estimates, which are required to implement the mechanisms.
Use of rstat() and rstatd also involves communication and context-switching overhead.

The message passing routines use the SunOS socket abstraction for communication and

Steve J. Chapin 5

CS

General

Arthur Nyneve

Cypress

Bredbeddle Percival

Figure 1: a sample distributed system

Policy

Network

Scheduling
Algorithm

MESSIAHS

Substrate
Mechanism

Macro-Scheduler Task Manipulation

Abstract Data and Task Management

Machine-dependent layer

Data Reporting and Task Manipulation Interface

Figure 2: structure of a messiahs scheduling module

Steve J. Chapin 6

Table 1: Functions in the machine-dependent layer

Purpose Function Name Description
data collection collect process data collect data regarding the number of

processes and load statistics
collect memory data collect data on available and total

memory
collect disk data collect data on available temporary

disk space
collect network data collect data on inter-module communi-

cation time
message passing get message receive a message from the network

send message send a message over the network
task management suspend task pause a running task

resume task continue executing a suspend task
kill task halt execution of a task and remove it

from the system
checkpoint tasky save the state of a task
migrate tasky checkpoints a task and moves it to a

target host
revert tasky returns a task to its originating system

Steve J. Chapin 7

the User Datagram Protocol (UDP) to exchange information between modules. UDP was
chosen because it provides an unreliable datagram protocol, which is the minimum level of
service required for the update and control channels. The message passing routines encode
the data using the xdr standard for external data representation.

The task manipulation primitives use the SunOS kill() system call, which sends a software
interrupt, called a signal, to a process. The signals used are sigstop, which pauses a process,
sigcont, which resumes a paused process, and sigkill, which terminates a process. The
task migration primitive is not implemented in the prototype, but is a stub procedure for
later completion.

2.2 Abstract Data and Communication Management

The middle layer in �gure 2 comprises the abstract data and task manipulation functions.
These functions use the basic mechanism provided by the machine-dependent layer to con-
struct higher-level semantic operations. For example, the send sr() routine, which sends a
schedule request to a neighbor, is implemented using the send message() function. Table 2
lists the abstract data and task management functions.

The message-passing functions construct a message from the pertinent data and use
the send message() function to communicate with a neighboring module. There is one send
routine for each message type.

messiahsmaintains two hash tables containing description vectors: one table containing
description vectors of foreign tasks executing on the local host and another table for de-
scription vectors of neighboring systems. The hash tables use double hashing as described in
Knuth [15, pp. 521{526] for e�ciency. The sys lookup() and task lookup() routines search the
tables for a particular task or system. The sys �rst(), sys next(), task �rst(), and task next()
routines iterate over the tables, returning successive description vectors with each call.

The event manipulation routines provide access to the internal event queues used by the
module. The register event() function inserts a timed event into the timeout queue, and the
enqueue() and dequeue() routines allow direct manipulation of the queues. The set timeout
routines enqueue timeout events of particular types, and the set period functions set the
timeout periods for the various timers in messiahs. If a timeout period is set to 0, the
associated timer is disabled. Input timeouts occur when a neighbor has not sent a status
message to the local host within the timeout period. Output timeouts indicate that the
local host should advertise its state to its neighbors. Recalculation timeouts cause the local
host to recompute its update vectors. When a revocation timeout occurs, the host checks
its state to see if tasks should be revoked.

3 Support for Scheduling Policies

As seen in �gure 2, the scheduling policy is implemented over the interface layer. Through
the interface layer, messiahs either directly provides or supports �ve mechanisms that can
be used to construct scheduling policies. These �ve mechanisms are system description,
decision �lters, task revocation, data combination and condensation, and node con�guration
and behavior customization.

Steve J. Chapin 8

Table 2: Functions in the abtract data and communication layer

Purpose Function Name Description
data exchange send sr send a schedule request message

send sa send a schedule accept message
send sd send a schedule deny message
send trq send a task request message
send ta send a task accept message
send td send a task deny message
send trv send a task revoke message
send ssq send a system status query
send ssv send a system status vector
send tsq send a task status query
send tsv send a task status vector
send jr send a join request
send jd send a join deny

description sys lookup �nd the SDV for a system in the system hash
table

vector access sys �rst return the �rst neighbor from the system
hash table

sys next return the next neighbor from the system
hash table

task lookup �nd the TDV for a task in the task hash table
task �rst return the �rst task from the task hash table
task next return the next task from the task hash table

events register event insert an event into the timeout event queue
enqueue event enqueue an event
dequeue event dequeue an event
new queue allocate an event queue
qempty check if a queue is empty
set input timeout enqueue an input timeout
set output timeout enqueue an output timeout
set recalc timeout enqueue a recalculation timeout
set revoke timeout enqueue a revocation timeout
set oto period set the output timeout period
set ito period set the input timeout period
set rcto period set the recalculation timeout period
set rvto period set the revocation timeout period

Steve J. Chapin 9

3.1 Intrinsic Mechanisms

messiahs uses a mechanism called description vectors to characterize available resources
and requests for resources. A system description vector, or SDV, lists the capabilities of an
autonomous system and comprises the state advertised between systems. A task description
vector, or TDV, describes the resources required by a computational job. Description vectors
contain a �xed portion that is optimized for task placement support, and an extensible
portion that administrators can use to implement new scheduling policies or to extend the
basic descriptions of requirements or abilities.

To determine the basis for the �xed portion of the description vector, we reviewed 18
algorithms from the existing scheduling literature [2{5, 7, 13, 17{20, 22{24, 26{28, 30, 31].
Table 3 depicts the resulting data set. We found that only two characteristics|processor
speed and inter-processor communication time estimates|were used by more than four
algorithms. Therefore, we included processor speed estimates in the description vector and
provide a mechanism to determine inter-system communication time. We also augmented
SDVs with other data items that we expect will be useful to writers of future scheduling
algorithms. This data supports the common case, as represented by the surveyed algorithms,
while the extension mechanism allows the inclusion of special-purpose data.

The address and module �elds uniquely identify a scheduling module: the address spec-
i�es a machine, and the module indicates which module on that machine. messiahs allows
multiple modules to run on a single machine (see [7]). The nsys �eld indicates how many
systems the vector represents; just as a distributed system encapsulates multiple subordinate
systems, the description vector for a system contains information describing its component
systems. The ntasks, nactivetasks, and nsuspendedtasks list the number of total tasks,
running tasks, and suspended tasks for the system. The willingness gives the rough prob-
ability that the system will accept a new task, and loadave estimates the computational
load on the entire system. The Procclass �eld is an array of records describing statistical
measures of the processor utilization, processor speed, free memory, and disk space.

Execution autonomy mandates the ability to remove a task from execution on the local
system. Aborting a running task ful�lls the autonomy requirements, but does not sup-
port load-balancing algorithms based on process migration. Therefore, messiahs includes
mechanisms to kill, checkpoint, suspend, resume, and migrate jobs.

In support of administrative and communication autonomy, tunable parameters a�ect
the general behavior of the node. These parameters are independent of any single scheduling
policy, and e�ect all polices running on the node. These four parameters are listed in table
4.

The recalc timeout �eld and revocation timeout �elds determine how often prescribed
events occur. The SPECint92 and SPECfp92 are measures of processor speed using the
SPEC benchmark suite [30]. The SPEC benchmark suite consists of applications-oriented
programs, speci�cally selected to represent real-world workloads.

The machine architecture type (e.g. SPARC or VAX) does not appear as a universal
parameter because many jobs are architecture independent. For example, text formatting
requests require the presence of a particular text processing package, but do not depend on
the underlying architecture.

Steve J. Chapin 10

Table 3: �xed portion of a system description vector

�eld name purpose
address address of the system
module id of module on this system
nsys number of systems described by the vector
ntasks total number of tasks currently accepted by the system
nactivetasks number of active tasks running on the system
nsuspendedtasks number of inactive tasks waiting on the system
willingness desire of the system to take on new tasks
loadave an estimate of the load average for the entire system
Procclass information on the di�erent classes of processors in the

system

Table 4: general state parameters

parameter purpose
recalc timeout suggested period, in seconds, between recalculations of

the local system description
revocation timeout period, in seconds, between checks for possible task

revocation
SPECint92 the integer performance rating of the node, per the SPEC

integer benchmark.
SPECfp92 the
oating point performance rating of the node, per the

SPEC
oating point benchmark.

Steve J. Chapin 11

3.2 Supported Mechanisms

messiahs supports the use of �lters to implement scheduling policies. Decision �lters take
two description vectors as input, and return an integer value denoting how well the two
vectors match according to the local policy. Larger values indicate closer matches. Scheduling
modules employ �lters to determine where to attempt scheduling a task (including on the
local node), and what tasks are eligible for migration or revocation.

messiahs allows multiple scheduling policies to operate within the system simultaneously,
and a single node can support two or more scheduling policies. For example, batch queues
for text processing, remote compilation, and remote program execution could all coexist
within the same distributed system, each with its own individual scheduling policy. The
administrator for each node could determine whether that node would participate as a server
for any or all of the services.

Communication autonomy requires that the local policy control the
ow of information
out of a system. This mandates a mechanism to combine and compact the data set, and to
allow the advertisement of restricted sets of information. In addition, data condensation is
essential to avoid arbitrary limits on scaling the mechanisms. If systems concatenated all
the data describing subordinate systems, the resources required to transmit and process a
description vector would soon outstrip the capabilities of many networks and processors.

Unfortunately, some information loss is unavoidable if data compression takes place.
Recall that in our example system, Arthur has no �rst-hand information about Bredbeddle
or Percival. Therefore, Arthur might misdirect scheduling requests to General, based on the
union of Percival's and Bredbeddle's abilities. For example, if Percival had 100 megabytes
of free disk space and 4 megabytes of memory, while Bredbeddle had 10 megabytes of disk
space and 32 megabytes of memory, the scheduling module on Arthur might mistakenly
think that resources were available to execute a task requiring 16 megabytes of memory and
50 megabytes of disk space. These misdirected requests cause a small e�ciency loss, but no
tasks will be misscheduled as a result.

4 The Language

The shaded interface layer shown in �gure 2 provides scheduling algorithms with access to
lower-level mechanisms. We have chosen to provide two interface layers: a simple program-
ming language, similar to that used in Univers [31], and a library of high-level language
functions. This section describes the messiahs Interface Language (MIL), and the next
section describes the library of function calls.

MIL contains direct support for dynamic scheduling algorithms, without precluding sup-
port for static algorithms. Static algorithms consider only the system topography, not the
state, when calculating the mapping. Dynamic algorithms take the current system state
as input, therefore the resultant mapping depends on the state (see [4]). Figure 3 depicts
the structure of an MIL program. The grammars for deriving the various rules, along with
explanations of their semantics, appear in the rest of this section.

Steve J. Chapin 12

begin state

<node state rules>

end

begin combining

<data combination rules>

end

begin schedfilter

<sched request filter rules>

end

begin taskfilter

<task request filter rules>

end

begin revokefilter

<revocation filter rules>

end

begin revokerules

<revocation rules>

end

Figure 3: MIL speci�cation template

Steve J. Chapin 13

4.1 Expressions and Types

MIL de�nes four basic types for data values: integers (int), booleans (bool),
oats (float),
and strings (string). Integers can be written in decimal or in hexadecimal. Booleans have
either the value true or false. Floats are two decimal digit sequences separated by a decimal
point, e.g. 123.45. Strings are a sequence of characters delimited by quotation marks (").

Identi�ers are a dollar sign followed by either a single word, or two words separated by a
period. The latter case speci�es �elds within description vectors. The legal vectors are the
received task description (task), the description of a task already executing on the system
(loctask), the system description of a neighboring system (sys), the description of the local
node (me), and the description being constructed by data combination (out). loctask is
used for the task request �lter and the revocation �lter. sys is used for the data combination
rules and the schedule request �lter. out is used only for the data combination rules, and
me can appear in any of the combination rules, �ltering, or task revocation sections.

The following grammar de�nes the expression types used by the language. This grammar
only derives expressions of the base types; in particular, there is no access to the Procclass
�eld of the SDV with MIL.

int-binop ! + j { j / j * j mod j & j j
max j min

int-expr ! int-expr int-binop int-expr j
(int-expr) j integer j
int(
oat-expr) j id

string-expr ! string-expr + string-expr j
(string-expr) j string j id

oat-binop ! + j { j / j * j max j min

oat-expr !
oat-expr
oat-binop
oat-expr j

(
oat-expr) j
oat j

oat(int-expr) j id

comp ! < j > j = j >= j <= j <>
bool-binop ! and j or j xor
bool-expr ! bool-expr bool-binop bool-expr j

not bool-expr j
int-expr comp int-expr j

oat-expr comp
oat-expr j
string-expr comp string-expr j
match(string-expr, string-expr) j
(bool-expr) j true j false j id

Steve J. Chapin 14

4.2 Access to Intrinsic Mechanisms

MIL includes �ve task manipulation primitives: kill, suspend, wake, migrate, and revert.
Other operations, such as process checkpointing, are available in the lower-level mechanisms,
but are not explicitly included in the language. kill aborts a task, discards any interim
results, and frees system resources used by the task. suspend temporarily blocks a running
task. wake resumes a suspended task. migrate checkpoints a task and attempts to schedule
it on neighboring systems. revert checkpoints the task and returns it to the originating
system for rescheduling. Task revocation rules take the following form, using a boolean
guard to determine when to take an action.

task-action ! kill j
suspend j
wake j
migrate j
revert

revocation-rule ! bool-expr : task-action ;

The node state section is a list of types, identi�ers, and constant values. Node state
declarations are parameters that a�ect system state. Unlike the extension variables, they
do not directly appear in the system description vector. The four node state parameters are
specint92, specfp92, recalc timeout, and revocation timeout. The specint92 and specfp92 pa-
rameters list the speed of the host in terms of the SPEC benchmarks [30]. The recalc timeout
and revocation timeout parameters determine the timeout periods for the associated events.

4.3 Filters and Data Combination

In MIL, a �lter is a series of guarded statements, similar to combining rules. In place of an
action, �lters de�ne integer expressions,

�lter-stmt ! bool-expr : int-expr ;

A return value of 0 indicates that there is no match. A negative value indicates an
error, and a positive value measures the a�nity of the two vectors. As noted earlier, higher
values indicate a better match. If the guard expression uses an unde�ned variable, the guard
evaluates to false. If the integer expression references an unde�ned variable, the �lter
returns -1, indicating an error. With appropriate extension variables and guards, a single
scheduling module can serve multiple scheduling policies as stated in section 3.2.

MIL provides a mechanism to combine description vectors. To support communication
autonomy, this mechanism allows the administrator to write rules specifying operations to
coalesce the data.

Steve J. Chapin 15

int-action ! discard j set int-expr

oat-action ! discard j set
oat-expr
bool-action ! discard j set bool-expr
string-action ! discard j set string-expr

combining-rule ! int id bool-expr:
int-action ; j

oat id bool-expr:

oat-action ; j

string id bool-expr:
string-action ; j

bool id bool-expr:
bool-action ;

The boolean expression acts as a guard, and the action is performed for a particular (type,
identi�er) pair if the value of the guard is true. Administrators may supply multiple rules
for the same pair. If multiple rules exist, the module evaluates them in the order written,
performing the action corresponding to the �rst guard that evaluates to true.

If no matching rule is found for a pair, the identi�er is discarded. Explicit discarding of
data items, via the discard action, ful�lls the constraint of communication autonomy. The
set value action assigns value to the current pair in the outgoing description vector. An
error in evaluating a guard automatically evaluates to false. If the evaluation of an action
expression causes a run-time error, e.g. a division by 0, the action converts to discard.

4.4 Speci�cation Evaluation

The extension and node state rules are interpreted when the speci�cation is �rst loaded. The
data combination rules are applied when a recalculation timeout occurs. When a revocation
timeout occurs, the module passes once through the list of revocation rules, repeatedly eval-
uating each one until its guards return false. If the guard evaluates to true, the revocation
�lter is applied to the appropriate list of tasks to provide a target for the revocation action.
If no task matches, the module moves on to the next rule in the list.

When a scheduling request arrives, the module iterates over the list of available systems,
evaluating the request �lter rules in-order until a guard that evaluates to true is found, or
the rules are exhausted. If no matching rule is found, 0 is returned. If a rule is found, its
value is returned as the suitability ranking for that system. The module follows a similar
procedure for task requests, iterating over the set of available tasks.

4.5 A Small Example

Figure 4 shows a simple MIL speci�cation for a SPARC IPC participating in a distributed
LaTEX text-processing system. Line 1 in the node state section sets the period for SDV
recalculation at 60 seconds. Every minute, each participating system will compute its SDV
and forward updates to its neighbors.

Steve J. Chapin 16

The SDV extension variable hasLaTeX is true if the system has LaTEX available and
wishes to act as a formatting server. Clients requesting LaTEX processing set the needsLaTeX
variable to true in their task description vector. The combining rule in line 2 sets the outgoing
hasLaTeX variable if any of the incoming description vectors have it set, and the rule on line
3 sets the hasLaTeX variable for the local hosts. Hosts providing the LaTEX service would
use line 3; hosts not providing the service would use line 2 to propagate advertisements by
other hosts.

The scheduling �lter rule in line 4 compares the available system vectors to the incoming
task vector, accepts servers with load averages of less than �ve, and ranks the systems based
on their load average. The guard would fail for a neighbor that had not set the hasLaTeX
variable, and return false.

5 A Library of Function Calls

This section describes a library of function calls, called a scheduling toolkit that provides
access to the underlying mechanism. The toolkit provides access to the functions in the low
and middle layers as well as the functions listed in table 5.

The send Uvec(), send Dvec(), and send Svec() functions send update vectors to a system's
parents, children, and siblings, respectively.

As shown in �gure 5, statistics vectors (statvec) are components of the procclass structure,
which are used to condense the advertised state information for a virtual system. Processors
are grouped into process classes on a logarithmic scale, based on their computation speed.
The statvec �elds represent multiple processors using statistical descriptions of their capa-
bilities. Processor speed was chosen as the grouping factor because research of the existing
scheduling algorithms indicates that processor speed is the primary consideration for task
placement (see chapter 2 of [7]). The SPEC ratings were chosen as the default speed rating
because they are the most widely available benchmark for both integer and
oating point
performance. Other measures of speed can be included through the extension mechanism.

The merge statvec() function merges two statistics vectors, and merge procclass() merges
two processor classes into one. The merge SDV() function provides a default mechanism
for merging two system description vectors into one. The functions in �gure 5 are used to
implement MIL, described in the previous section.

The programmer uses the toolkit to write a set of event handlers. These handlers comprise
the scheduling policy. messiahs prede�nes the set of handlers listed in table 6, which may
be overloaded by the administrator to create a new policy.

6 Example Algorithms Using MIL

In addition to the simple LaTEX batch processing system described earlier, we present two
applications built using MIL. The �rst demonstrates the task revocation facility as used
by a general-purpose distributed batch system. The second implements a load-balancing
algorithm.

Steve J. Chapin 17

begin state

1. int $recalc_period 60;

end

begin combining

2. bool $out.hasLaTeX

$sys.hasLaTeX: set true;

3. bool $out.hasLaTeX

$sys.address == $me.address:

set true;

end

begin schedfilter

4. $task.needsLaTeX and $sys.hasLaTeX

and int($sys.loadave) < 5 :

6 - int($sys.loadave);

end

Figure 4: a simple MIL speci�cation

Table 5: Functions in the messiahs toolkit

Purpose Function Name Description
data exchange send Uvec send the U update vector to a parent

send Dvec send the D update vector to a child
send Svec send the U update vector to a sibling

description vector merge SDV merges two SDVs into one
manipulation merge statvec merge two statistics vectors into one

merge procclass merge two procclass sets into one
miscellaneous mk sid sb return a printable form of the system identi-

�cation number
Log produce output in the error log
pLog produce output in the error log, including

operating-system speci�c error messages

Steve J. Chapin 18

struct statvec {

float min, max, mean, stddev, total;

};

typedef struct statvec Statvec;

struct procclass {

bit32 nsys; /* # of machines in this class */

Statvec qlen; /* run queue statistics */

Statvec busy; /* load on cpu (percentage) */

Statvec physmem; /* total physical memory */

Statvec freemem; /* available memory */

Statvec specint92; /* ratings for SPECint 92 */

Statvec specfp92; /* ratings for SPECfp 92 */

Statvec freedisk; /* public disk space (/tmp) stats */

};

typedef struct procclass Procclass;

#define SDV_NPROCCLASS 7

#define SDV_MAXUSERDEF 2048 /* multiple of 2 for cksum */

struct SDV {

SysId sid; /* Autonomous System ID */

bit32 nsys; /* number of total systems */

bit32 ntasks; /* number of total tasks */

bit32 nactivetasks; /* number of active tasks */

bit32 nsuspendedtasks; /* number of suspended tasks */

float willingness; /* probability of taking on */

/* a new task */

float global_load; /* global load average */

Procclass procs[SDV_NPROCCLASS]; /* information on the */

/* different classes of procs */

/* in the autonomous system */

bit32 userdeflen; /* length of user-defined data */

bit8 userdef[SDV_MAXUSERDEF]; /* user defined data */

};

typedef struct SDV Sdv;

Figure 5: messiahs data structures

Steve J. Chapin 19

6.1 Distributed Batch

The mitre distributed batch [1], Condor [11], and Remote Unix [2] systems support
general-purpose distributed processing for machines running the Unix operating system.
Figure 6 lists a short speci�cation �le for a SPARC IPC participating in a distributed batch-
ing system. The state rules (lines 1{4) give the speed ratings for an IPC and the recalculation
and revocation timeout periods.

The combining rules in lines 5 and 6 ensure that the processor type variable, proctype,
contains the string ":SPARC" and that the operating system variable OSname contains the
string ":SunOS4.1". Lines 7 and 8 propagate incoming processor and operating system
names.

The example schedule request �lter (lines 9 and 10) computes a rating function in the
range [0, 200] for the local system, and [0, 400] for remote systems. The scheduling request
rules ensure that the processor type and operating system match, and assign a priority to a
match based on the system load average. Because there is no provision for requesting tasks
from a busy system, the section for task request rules is empty.

Hosts participating in the batch system preserve autonomy by varying the parameters of
the schedule request �lter. For example, tasks submitted by a local user can be given higher
priority by basing the rating function on the source address of the task.

The task revocation rules (lines 12 and 13) determine, based on the computational load
on the node, whether active tasks should be suspended, or whether suspended tasks should
be returned to execution. The true guard in the revocation �lter rule (line 10) matches any
available task, and the value portion of the rule assigns an equal priority to all tasks under
consideration.

6.2 Load Balancing

Several researchers have investigated load balancing and sharing policies for distributed
systems, such as those described in [32], [33], and [34].

The greedy load-sharing algorithm [32], makes decisions based on a local optimum. When
a user submits a task for execution, the receiving system attempts to place the task with a
less busy neighbor, according to a weighting function. If no suitable neighbor is found, the
task is accepted for local execution.

The suggested weighting function to determine if a task should be placed remotely is
f(n) = n div 3, where n is the number of tasks currently executing on the local system. The
algorithm searches for neighbors whose advertised load is less than or equal to one-third the
local load. Because the greedy algorithm depends on local state, it is dynamic.

The policy speci�cation in �gure 7 implements a variant of the greedy algorithm. The
original algorithm used a limited probing strategy to collect the set of candidates for task
reception. The version in �gure 7 sets the recalculation and retransmission periods low (line
1), and depends on the SDV dissemination mechanism to determine the candidate systems.

The combination rules (lines 2 and 3) set the $minload �eld to be the minimum of the
load advertised by neighbors and the local load. The �lter assigns a low priority to local
execution (line 4), and rates the neighboring systems on a scale of two through 100 (line 5).
Any eligible neighbor takes precedence over local execution, but if the resultant candidate

Steve J. Chapin 20

begin state

1. float $SPECint92 13.8;

2. float $SPECfp92 11.1;

3. int $recalc_period 30;

4. int $revocation_period 30;

end

begin combining

5. string $out.proctype not match($out.proctype, "SPARC"):

set $out.proctype + ":SPARC";

6. string $out.OSname not match($out.OSname, "SunOS4.1"):

set $out.OSname + ":SunOS4.1";

7. string $out.proctype

not match($out.proctype, $sys.proctype):

set $out.proctype + $sys.proctype;

8. string $out.OSname not match($out.OSname, $sys.OSname):

set $out.OSname + $sys.OSname;

end

begin schedfilter

9. $sys.address == $me.address and

match($sys.proctype, $task.proctype) and

match($sys.OSname, $task.OSname):

max(200 - (100 * int($sys.loadave)), 0);

10. match($sys.proctype, $task.proctype) and

match($sys.OSname, $task.OSname):

max(400 - (100 * int($sys.loadave)), 0);

end

begin revokefilter

11. true: 1;

end

begin revokerules

12. $me.loadave > 2.0 and $me.nactivetasks > 2: suspend;

13. $me.loadave < 1.0 and $me.nsuspendedtasks > 0: wake;

end

Figure 6: MIL remote execution speci�cation

Steve J. Chapin 21

Table 6: Prede�ned event handlers in messiahs

Function Name Corresponding Event
handle msg sr sched request message
handle msg sa sched accept message
handle msg sd sched deny message
handle msg trq task request message
handle msg ta task accept message
handle msg td task deny message
handle msg trv task revoke message
handle msg ssq system status query message
handle msg ssv system status vector message
handle msg tsq task status query message
handle msg tsv task status vector message
handle msg jr join request message
handle msg jd join deny message
handle input timeout input timeout
handle output timeout output timeout
handle recalc timeout recalculation timeout
handle revoke timeout revocation timeout

begin state

1. int $recalc_period 5;

end

begin combining

2. int $out.minload ($sys.address == $me.address):

set min($out.minload, $me.ntasks);

3. int $out.minload true:

set min($out.minload, $sys.minload);

end

begin schedfilter

4. $sys.address == $me.address: 1;

5. $sys.minload <= ($me.ntasks / 3):

max(100 - $sys.minload, 2);

end

Figure 7: MIL speci�cation for greedy load sharing

Steve J. Chapin 22

set is empty, the local system executes the task.
The greedy algorithm has no provision for task revocation; any tasks accepted run to

completion. Thus, systems using the depicted speci�cation yield some execution autonomy
in the spirit of cooperation.

7 Example Algorithms Using the Toolkit

As stated earlier, messiahs contains a set of event handlers which may be overloaded by
the administrator to create a new policy. For example, the messiahs prototype includes
a default handler for schedule request message events. The administrator customizes the
scheduling policy by writing a �lter routine.

This section presents the implementation of three scheduling algorithms using the toolkit.
Figure 8 lists the code for Arrival Balanced Scheduling [17], �gure 9 lists the code for the
greedy algorithm, and �gure 10 lists the code for the BOS algorithm [16].

The Greedy algorithm was described in section 6. Arrival Balanced Scheduling assigns
a task to the processor that will complete it �rst, as estimated by the scheduling host. The
estimated runtime of the task, the current load on the target host, and the speed of the
target host are used to estimate the �nishing time of the task. The BOS algorithm employs
a simple centralized scheme using a heuristic approach to schedule a task force on a set of
homogeneous processors. The algorithm generates an initial mapping, then uses a bounded
probabilistic approach to move towards the optimal solution.

The implementations of three algorithms demonstrate that the underlying mechanisms
are easy to use and are
exible enough to support a wide variety of algorithms. The longest
of the three algorithms, BOS, represents less than one-half of one percent of the code for
the scheduling support module. Writing a new algorithm involves editing a code skeleton
and inserting the algorithm code in a C switch statement. This process takes only a few
minutes for a programmer familiar with the messiahs code. In contrast, writing a scheduler
from scratch, including data collection, data communication, and task management would
take man-months of e�ort.

This ratio of schedule code size to support code size is consistent with that seen in other
distributed scheduling support systems, such as Condor. However, messiahs has ease-of-use
advantages because of its separation of mechanism and policy, and because of its support
for customizable scheduling policies.

Performance measurements were taken for each of the three algorithms, based on sim-
ulated tasks [7, chapter 6]. These results indicate, but do not prove, that the overhead
incurred by use of the prototype is minor, typically less than 10% for dynamic algorithms
and less than 40% for static algorithms. The 40% slowdown for a static algorithm may be
acceptable in some environments, because the messiahs version of the algorithm works in
an environment the original static algorithm could not.

In addition, it appears that the messiahs mechanisms perform better as the ratio of
inter-task delay to update frequency increases. This increased ratio means that update
information travels farther within the distributed system between task arrivals, and thus the
scheduling modules are working with more up-to-date information.

Steve J. Chapin 23

nt = 0;

for (i = 0; i < SDV_NPROCCLASS; i++) {

pp = &(psdv->procs[i]);

if (pp->nsys > 0) {

float ps, la, d;

la = pp->qlen.min;

ps = pp->specint92.mean;

d = (la + 1) * ptdv->runtime * ptdv->specint92;

value = (int) (1000 * ps / d);

if (value > nt) {

nt = value;

}

}

}

return nt;

Figure 8: Toolkit implementation of the ABS algorithm

if (sidmatch(psdv->sid, pmysdv->sid)) {

return 1;

} else if(psdv->global_load <= (pmysdv->ntasks / 3)) {

gl = (int) psdv->global_load;

nt = (int) psdv->ntasks;

value = ((100 - gl) * 1000) + (999 - nt);

return(value);

} else {

return 0;

}

Figure 9: Toolkit implementation of the greedy algorithm

Steve J. Chapin 24

i = 100000;

if (is_sibling(pste)) {

return (0);

}

/* add in 'self' and 'target' */

if (pste == pmyste) {

i -= ((pmysdv->ntasks + 1) * (pmysdv->ntasks + 1));

} else {

i -= (pmysdv->ntasks * pmysdv->ntasks);

gl = (pste->sdv.ntasks + 1) * (pste->sdv.ntasks + 1);

nt = MAX(pste->sdv.nsys, 1);

i -= (gl / nt);

}

for (pshte = sys_first(); pshte != (Shte *) NULL;

pshte = sys_next(pshte)) {

if (pshte->entry != pste) {

nt = MAX(pshte->entry->sdv.nsys, 1);

gl = pshte->entry->sdv.ntasks *

pshte->entry->sdv.ntasks;

i -= (gl / nt);

}

}

return i;

Figure 10: Toolkit implementation of the BOS algorithm

Steve J. Chapin 25

8 Concluding Remarks

The mechanisms provided by the messiahs system, MIL and the scheduling toolkit support
global task scheduling and load sharing in scalable distributed systems. These mechanisms
also protect the autonomy of the individual systems, while uniting heterogeneous machines
into a coherent distributed system.

The language presented here is simple and expressive. It addresses two neglected areas of
distributed scheduling, heterogeneity and autonomy. MIL supports a broad range of existing
scheduling algorithms, while enabling rapid development, prototyping, and analysis of new
policies.

Because of its simplicity, MIL is somewhat limited. It cannot store history and has
no control
ow or looping constructs. Because of this, scheduling algorithms that accept
multiple tasks and a set of system descriptions as input cannot be expressed precisely using
this language. MIL also assumes that neighbors can be trusted to tell the truth in their SDV
advertisements, and depends on a model of timely information exchange.

A more complex approach that addresses these limitations, implemented as a set of library
calls for high-level languages, is the scheduling toolkit described in section 5. The toolkit is a
more complex interface to the underlying mechanisms than MIL is, but is also more expressive
and e�cient than MIL. Algorithms developed using MIL can be implemented and re�ned
using the toolkit. Preliminary performance results obtained from the toolkit demonstrated
that overhead of less than 10% is achievable for dynamic scheduling algorithms.

The prototype continues to evolve. The existing task environment is incompletely de�ned;
in particular, the performance results were obtained using simulated tasks. The primary
focus of current research on the prototype is to add support for task migration and execution,
while still preserving as much autonomy as possible.

In summary, messiahs embodies mechanisms supporting task placement in distributed,
heterogeneous, autonomous systems. This support includes extensible mechanisms for im-
plementing the local scheduling policy. This paper brie
y described the messiahs scheduling
support mechanisms, de�ned a simple language and a library of function calls for construct-
ing schedulers, and gave sample implementations of representative scheduling policies using
these tools.

References

[1] C. A. Gantz, R. D. Silverman, and S. J. Stuart. A Distributed Batching System for Parallel
Processing. Software{Practice and Experience, 19, 1989.

[2] M. J. Litzkow. Remote UNIX: Turning Idle Workstations Into Cycle Servers. In USENIX

Summer Conference, pages 381{384, 2560 Ninth Street, Suite 215, Berkeley, CA 94710, 1987.
USENIX Association.

[3] A. H. Karp, K. Miura, and H. Simon. 1992 Gordon Bell Prize Winners. IEEE Computer,
26(1):77{82, January 1993.

[4] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in General-Purpose Distributed
Computing Systems. IEEE Transactions on Software Engineering, 14(2):141{154, February
1988.

Steve J. Chapin 26

[5] V. M. Lo. Heuristic Algorithms for Task Assignment in Distributed Systems. IEEE Transac-

tions on Computers, 37(11):1384{1397, November 1988.

[6] S. J. Chapin and E. H. Spa�ord. Constructing Distributed Schedulers with the MESSIAHS
Interface Language. In 27th Hawaii International Conference on Systems Sciences, volume 2,
pages 425{434, Maui, Hawaii, January 1994.

[7] S. J. Chapin. Scheduling Support Mechanisms for Autonomous, Heterogeneous, Distributed
Systems. Ph.D. Dissertation, Purdue University, 1993.

[8] S. J. Chapin and E. H. Spa�ord. Scheduling Support for an Internetwork of Heterogeneous,
Autonomous Processors. Technical Report TR-92-006, Department of Computer Sciences,
Purdue University, West Lafayette, IN, January 1992.

[9] S. J. Chapin and E. H. Spa�ord. An Overview of the MESSIAHS Distributed Scheduling Sup-
port System. Technical Report TR-93-011 (supercedes TR-93-004), Department of Computer
Sciences, Purdue University, West Lafayette, IN, January 1993.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3.0

User's Guide and Reference Manual. Oak Ridge National Laboratory, Oak Ridge, TN 37831,
February 1993.

[11] A. Bricker, M. Litzkow, and M. Livny. Condor Technical Summary. Technical Report 1069,
Department of Computer Science, University of Wisconsin-Madison, January 1992.

[12] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley Publishing Company, Reading, MA, 1974. ISBN 0-201-00029-6.

[13] F. Eliassen and J. Veijalainen. Language Support for Multidatabase Transactions in a Co-
operative, Autonomous Environment. In TENCON '87, pages 277{281, Seoul, 1987. IEEE
Regional Conference.

[14] W. Du, A. K. Elmagarmid, Y. Leu, and S. D. Ostermann. E�ects of Local Autonomy on Global
Concurrency Control in Heterogeneous Distributed Database Systems. In Second International
Conference on Data and Knowledge Systems for Manufacturing and Engineering, pages 113{
120. IEEE, 1989.

[15] D. E. Knuth. The Art of Computer Programming, Volume III: Searching and Sorting. Addison-
Wesley, 1973. ISBN 0-201-03803-X.

[16] G. J. Bergmann and J. M. Jagadeesh. An MIMD Parallel Processing Programming System
with Automatic Resource Allocation. In Proceedings of the ISMM International Workshop on

Parallel Computing, pages 301{304, Trani, Italy, September 10{13 1991.

[17] B. A. Blake. Assignment of Independent Tasks to Minimize Completion Time. Software{

Practice and Experience, 22(9):723{734, September 1992.

[18] F. Bonomi. On Job Assignment for a Parallel System of Processor Sharing Queues. IEEE

Transactions on Computers, 39(7):858{869, July 1990.

[19] F. Bonomi and A. Kumar. Adaptive Optimal Load Balancing in a Nonhomogeneous Multi-
server System with a Central Job Scheduler. IEEE Transactions on Computers, 39(10):1232{
1250, October 1990.

Steve J. Chapin 27

[20] A. Drexl. Job-Prozessor-Scheduling f�ur heterogene Computernetzwerke (Job-Processor
Scheduling for Heterogeneous Computer Networks). Wirtschaftsinformatik, 31(4):345{351,
August 1990.

[21] A. Ghafoor and I. Ahmad. An E�cient Model of Dynamic Task Scheduling for Distributed
Systems. In Computer Software and Applications Conference, pages 442{447. IEEE, 1990.

[22] D. Hochbaum and D. Shmoys. A Polynomial Approximation Scheme for Scheduling on Uniform
Processors: Using the Dual Approximation Approach. SIAM Journal of Computing, 17(3):539{
551, June 1988.

[23] C. C. Hsu, S. D. Wang, and T. S. Kuo. Minimization of Task Turnaround Time for Distributed
Systems. In Proceedings of the 13th Annual International Computer Software and Applications
Conference, 1989.

[24] C. C. Price and M. A. Salama. Scheduling of Precedence-Constrained Tasks on Multiproces-
sors. Computer Journal, 33(3):219{229, June 1990.

[25] S. Ramakrishnan, I. H. Cho, and L. Dunning. A Close Look at Task Assignment in Distributed
Systems. In INFOCOM '91, pages 806{812, Miami, FL, April 1991. IEEE.

[26] V. Sarkar and J. Hennessy. Partitioning Parallel Programs for Macro-Data
ow. In ACM

Conference on Lisp and Functional Programming, pages 202{211, August 1986.

[27] Vivek Sarkar and John Hennessy. Compile-time Partitioning and Scheduling of Parallel Pro-
grams. SIGPLAN Notices, 21(7):17{26, July 1986.

[28] H. S. Stone. Multiprocessor Scheduling with the Aid of Network Flow Algorithms. IEEE

Transactions on Software Engineering, SE-3(1):85{93, January 1977.

[29] C. M. Wang and S. D. Wang. Structured Partitioning of Concurrent Programs for Execution
on Multiprocessors. Parallel Computing, 16:41{57, 1990.

[30] Standard Performance Evaluation Corporation. The SPEC Newsletter, published quarterly.

[31] M. Bowman, L. L. Peterson, and A. Yeatts. Univers: An Attribute-Based Name Server.
Software{Practice and Experience, 20(4):403{424, April 1990.

[32] S. Chowdhury. The Greedy Load Sharing Algorithm. Journal of Parallel and Distributed

Computing, 9:93{99, 1990.

[33] D. L. Eager, E. D. Lazowska, and J. Zahorjan. A Comparison of Receiver-Initiated and
Sender-Initiated Dynamic Load Sharing. Technical Report 85-04-01, University of Washington,
Department of Computer Science, April 1985.

[34] M. F. Pucci. Design Considerations for Process Migration and Automatic Load Balancing.
Technical report, Bell Communications Research, 1988.

