
Active Defense of a Computer System using Autonomous

Agents

Technical Report No. 95-008

Mark Crosbie, Gene Spa�ord

COAST Group

Dept. of Computer Sciences

Purdue University

West Lafayette IN 47907-1398

fmcrosbie,spafg@cs.purdue.edu

February 15, 1995

Abstract

This report presents a prototype architecture
for an active defense mechanism for computer
systems. The intrusion detection problem is
introduced and some of the key aspects of any
solution are explained. Previous attempts to
use similar techniques are discussed, and their
shortcomings are explained. A new architec-
ture is proposed which uses Genetic Program-
ming to evolve programs to detect anomalous
behaviour in a system. This architecture is
developed and evaluated. A sample genetic
program is used to discuss some of the design
aspects of the agents. Cooperative monitoring
of NFS requests shows how the approach can
be generalised. The discussion details some
issues to be addressed and future research di-
rections.

1 Introduction

Because of increased network connectivity,
computer systems are becoming increasingly

vulnerable to attack. These attacks often ex-
ploit
aws in either the operating system or
application programs. The general goal of
such intrusions is to subvert the traditional se-
curity mechanisms on the systems and execute
operations in excess of the intruder's authori-
sation. These operations could include read-
ing protected or private data or simply doing
malicious damage to the system or user �les.

In a running system there will be a variety
of user and system processes performing jobs
on behalf of the users. These jobs will perform
di�erent actions to accomplish their tasks: e.g.
opening a �le, writing to memory, communi-
cating with other processes etc. So a view of
a computer system running a user workload
could be that of a continuous stream of actions
on objects. In this view, the problem we are
trying to solve can be stated quite succinctly
as follows:

Allow certain actions on certain ob-
jects in certain contexts. Closely
monitor all other actions and treat

1

them as suspicious behaviour.

A working de�nition of suspicious behaviour
is as follows: every system will have normal us-
age patterns. These patterns occur on a sys-
tem wide level (e.g. the type and mix of jobs
being run) and on a user level (e.g. average job
length, type of job run, normal usage hours).
Given these de�nitions of system usage pat-
terns, anything that falls outside these norms
will be considered suspicious.
Users sometimes break out of their normal

usage patterns. This often occurs when a
user must perform a task which they would
rarely do. At other times they actually be-
gin performing new tasks because of an ex-
ternal policy decision. Examples of these are:
a user who normally uses the system to read
mail starts to compile very large programs, or
where a user who normally does development
work on the system is moved to another sys-
tem, leaving the originalmachine as just a mail
home. In both these cases the usage pattern
of the user has changed on the system in ques-
tion.
We are proposing an Intrusion Detection

System that will alert system operators to pos-
sible suspicious activity that may constitute
an intrusion. The detection system will run
independently of the jobs already on the sys-
tem, and will provide continual information to
an operator regarding any suspicious activity
on the system. It must gather enough evi-
dence to consider an action as suspicious be-
fore alerting the operator. In other words, it
must be able to di�erentiate actual intrusions
from small changes in user behaviour.
A key requirement is
exibility. It should be

possible to specify what actions are to be al-
lowed and disallowed initially. The detection
system should also be trainable to recognise
what actions are common on the system and
adjust its detection mechanisms accordingly.
Thus the detection system can be \tuned" to

perform optimally in a given system. As sys-
tem pro�les change over time, the detection
system will change with them to allow the
newer activities, and possibly disallow earlier
actions. This is accomplished by having the
detection system learn by observation, decid-
ing which actions constitute normal system be-
haviour, and which can be considered suspi-
cious.

2 Intrusions and Intrusion

Detection

An intrusion can be de�ned as [1]:

any set of actions that attempt to
compromise the integrity, con�den-
tiality or availability of a resource.

Intrusions are hard to catch because there
are so many ways in which they may take
place. Intruders can exploit both known ar-
chitectural weaknesses in systems and inside
knowledge of the operating systems to bypass
the normal authentication process. A �x (or
patch) to a
aw in a system may introduce a
new
aw, or expose an existing one - giving
rise to another opportunity for attack. Simi-
larly, because of human factors, a given system
may not have all (or any!) patches applied to
it. So the vulnerability state of a system is in
a continual state of
ux. A good intrusion de-
tection system must be able to deal with this.
Despite the many forms of intrusion, they

can be catagorised into two main classes:

� Misuse intrusions are well de�ned attacks
on known weak points of a system. They
can be spotted by watching for certain ac-
tions being performed on certain objects.

� Anomaly intrusions are harder to quan-
tify. They are based on observations of
normal system usage patterns, and de-
tecting deviations from this norm. There

2

is an inherent uncertainty about this form
of detection - it may
ag legal behaviour
as illegal, or worse still, it may allow il-
legal behaviour to proceed, considering it
normal.

As misuse intrusions follow well-de�ned pat-
terns they can be detected by doing pattern
matching on audit-trail information. For ex-
ample, an attempt to create a setuid �le can
be caught by examining log messages result-
ing from system calls. This can be done using
a pattern matching approach such as in [6],
which is discussed in the next section.
However, anomaly intrusions are harder to

detect. There are no �xed patterns that can
be monitored for and so a more \fuzzy" ap-
proach must be taken. Ideally we would like
a system that combined human-like pattern
matching capabilities with the vigilance of a
computer program. Thus it would always be
monitoring the system for potential intrusions,
but would be able to ignore spurious false in-
trusions if they resulted from legitimate user
actions. It would rely on heuristics to decide
this | they could either be pre-speci�ed (by
a human operator) or learned by the system
over time. However heuristics will not always
guarantee perfect accuracy, so another goal is
to minimise the probability of incorrect classi-
�cation. This is discussed more in the section
on Desired Characteristics.

3 Related Work

The use of Arti�cial Intelligence techniques to
help catagorise behaviours is not new, and the
following section details some previous work.
Most previous work has focused on either

Behaviour Classi�cation or Data Reduction.
The �rst case is where an attempt is made to
decide whether a given set of behaviours con-
stitutes an intrusive action. The second case
is where a large data set (typically megabytes

of audit-log data) is analysed for patterns of
actions so as to reduce the amount of data to
be handled by a human user.
The paper Arti�cial Intelligence and Intru-

sion Detection [4] outlines some methods by
which classic AI techniques can be applied
to the problem. It concentrates on the data
reduction and behaviour classi�cation prob-
lems. It outlines approaches involving both
rule-based systems (such as expert systems)
and classi�cation systems (neural-networks or
classi�er systems).
The limitations of these approaches is that

they require a lot of initial training and there
is high maintainance during their lifetimes. In
an expert system, the initial rule-base must
be generated by hand using the knowledge of
a human expert in the �eld. This is a time-
consuming business, and probably quite ex-
pensive too. There is a more serious shortcom-
ing in this approach though | not all experts
know every vulnerability in a system, and even
if they do, they cannot keep up to date with
every vulnerability discovered. More seriously,
they cannot discover vulnerabilities by con-
sidering the interactions of the many existing

aws in a system.
If the system pro�le changes considerably

this rule-base will have to be redesigned to re-

ect new possible intrusions. This is an error-
prone task | the new rules may not fully cover
the set of vulnerabilities in the system. On a
more practical level, the e�ort required to do
this may prevent system administrators from
keeping their rule-bases current, thus they will
be operating with out-dated information in
their intrusion detection systems.
Another example of a rule-based approach

to intrusion detection is the IDES system [5].
It has a rule database which stores knowledge
about vulnerabilities in the system, security
policies in force on the system and past in-
trusions. From the system current state it at-
tempts to match a rule which will classify the

3

state of the system - has it been compromised
or is it intact? This su�ers from the limita-
tions outlined above.
However, it has one important di�erence

from the static rule-based approach | it re-
members past intrusions. It builds on past ex-
perience in attempting to monitor a system1.
We consider this to be an important feature of
any intrusion detection system as new intru-
sion attempts are often slight modi�cations of
previous attempts. More fundamentally, it is
similar to the way in which humans approach
an unfamiliar situation | \have I seen some-
thing similar to this before?"
Solutions which take a di�erent approach to

the problem, such as that proposed by Heady,
Luger et al. in their paper on a Network Level
Intrusion Detector [1], su�er from a problem
of scaling. In this approach they use a Clas-
si�er System2 to determine the state of their
network. They gather metrics about network
packets and from this try to infer whether they
can classify the state of their network. How-
ever, this has two limitations:

1. It scales very poorly to a situation where
many machines are on a high-speed net-
work (such as an ATM or FDDI back-
bone) as the sheer volume of data to be
processed would swamp any system.

2. The information they use to determine
the network state is limited to packet
header data. We feel that this is too
limited in scope to be useful on its own.
There is no information processed about
the nature of the actions beyond that that
can be deduced from the header. For ex-
ample, there is no way of distinguishing
a legitimate connection to the mail port
from that of a possible intruder.

1using the useful rule-of-thumb in computing: past
behaviour is likely to predict future behaviour.

2A cross between an expert-system and a neural
network. See Goldberg [2] for information.

A system by Kephart [7] takes a similar ap-
proach to this paper by using the human im-
mune system as a model for developing a virus
detection and eradication system. However,
his approach is speci�cally aimed at viruses on
PC computers. He does not address the issue
of anomalous behaviour or how to decide if a
machine is undergoing an intrusion. Unfortu-
nately the more interesting aspects of his work
on virus-host attachment are proprietary.
However his paper describes some issues

that must be addressed by our system. These
include:

� Intruder recognition | deciding if an ac-
tion by a user is possibly an intrusion.

� Learning about intrusions | similar to
the IDES system mentioned earlier, his
system attempts to learn about intrusions
and use that knowledge in future deci-
sions. We propose a similar mechanism.

� Response to an intrusion | once an in-
trusion is detected, how is it dealt with.

Finally, an approach which comes closest to
the
exibility needed in a system like this,
but does not possess the learning capabil-
ity, is the intrusion detection model based on
pattern matching as proposed in [6]. They
show how attacks can be classi�ed as patterns
which match against occurances in a system.
These patterns can encode dependencies be-
tween system conditions (i.e. event x must
happen and so must y) and also temporal con-
ditions (i.e. event x must happen before event
y while condition z is true). This is a powerful
method of detecting intrusions, but it relies
on the patterns being generated beforehand.
If the patterns are incomplete then there may
be holes in the system's defenses. Again, the
patterns may have to be re-generated if the
system's behaviour changes due to a policy or
operational change.

4

4 Desired Characteristics

of the Detector

From the above summary of some related
work, certain key points emerge. A intrusion
detection system should address the follow-
ing issues, regardless of what mechanism it is
based on:

� It must run continually without hu-
man supervision. The system must be
reliable enough to allow it to run in the
background of the system being observed.
However, it should not be a \black box"
| its internal workings should be exam-
inable from outside.

� It must be fault tolerant in the sense
that it must survive a system crash and
not have to have its knowledge-base re-
built at restart.

� On a similar note to above, it must re-
sist subversion. The system can mon-
itor itself to ensure that it has not been
subverted.

� It must impose a minimal overhead on
the system. A system that slows a com-
puter to a crawl will simply not be used.

� It must observe deviations from normal
behaviour.

� It will be easily tailored speci�cally to
the system in question. Every system
has a di�erent usage pattern - the defense
mechanism should adapt easily to these
patterns.

� Changing system behaviour over time
as new applications are added means it
must cope with changes in the system pro-
�le over time.

� It must be di�cult to fool.

The last point raises an issue about the type
of errors likely to occur in the system. These
can be neatly catagorised as either false posi-
tive, false negative or subversion errors. A
false positive occurs when the system classi�es
an action as anomalous (a possible intrusion)
when it is a legitimate action. A false negative
occurs when an actual intrusive action has oc-
curred but the system allows it to pass as non-
intrusive behaviour. A subversion error occurs
when an intruder modi�es the operation of in-
trusion detector to force false negatives to oc-
cur.
False positive errors will lead users of the in-

trusion detector system to ignore its output, as
it will classify legitimate actions as intrusions.
The occurances of this type of error should
be minimised (it may not be possible to com-
pletely eliminate them) so as to provide use-
ful information to the operators. If too many
false positives are generated, the operators will
come to ignore the output of the system over
time, which may lead to an actual intrusion
being detected but ignored by the users.
A false negative error occurs when an ac-

tion proceeds even though it is an intrusion.
False negative errors are more serious than
false positive errors because they give a mis-
leading sense of security. By allowing all ac-
tions to proceed, a suspicious action will not be
brought to the attention of the operator. The
intrusion detection system is now a liability as
the security of the system is less than it was
before the intrusion detector was installed.
The subversion error is more complex and

ties in with false negative errors. An intruder
could use knowledge about the internals of an
intrusion detection system to alter its opera-
tion, possibly allowing anomalous behaviour
to proceed. The intruder could then violate
the system's operational security constraints.
This may be discovered by a human operator
examining the logs from the intrusion detector,
but it would appear that the intrusion detec-

5

tion system still seems to be working correctly.
Another form of subversion error is fooling

the system over time. As the detection sys-
tem is observing behaviour on the system over
time, it may be possible to carry out oper-
ations each of which when taken individually
pose no threat, but taken as an aggregate form
a threat to system integrity. How would this
happen? As mentioned previously, the detec-
tion system is continually updating its notion
of normal system usage. As time goes by a
change in system usage patterns is expected,
and the detection system must cope with this.
But if an intruder could perform actions over
time which were just slightly outside of normal
system usage, then it is possible that the ac-
tions could be accepted as legitimate whereas
they really form part of an intrusion attempt.
The detection system would have come to ac-
cept each of the individual actions as slightly
suspicious, but not a threat to the system.
What it would not realise is that the combi-
nation of these actions would form a serious
threat to the system.

5 Prototype Solution

As seen above, typical detection systems take
the form of a monolithic block of code which
sits either in the system kernel or on top of it
and monitors all requests passing into the ker-
nel. In the proposed solution, this approach is
abandoned in favour of a group of free-running
processes which can act independently of each
other and the system. These are termed Au-
tonomous Agents3. They are trained to ob-
serve system behaviour and
ag any behaviour
that they consider to be anomalous.
In this prototype, the agents will monitor

the network tra�c on a system. They will in-
terface to the network via the DLPI [9] mod-

3See the article by Maes [11] for an introduction to
autonomous agents.

ule provided with SunOs 5.x. This does not
mean that the agents will only work on Sun
machines. They require that an interface be
provided that allows them access to network
tra�c. They access this interface through cer-
tain well de�ned primitives. How the actual
data is provided to them is irrelevant.
They will be trained to detect anomalous

activity in this tra�c by being subjected to a
training phase by a human operator. The op-
erator will present di�erent styles of network
tra�c (both intrusive tra�c and neutral traf-
�c) and guide the learning of the agents. Note
that the agents use Genetic Programming to
actually learn, the operator does not have to
explicitly adjust the operation of any of the
agents. This is described in detail below.

5.1 Design Overview

Figure 1 gives an overall view of how the
agents operate. At the lowest level is the
raw network interface itself. In this prototype
implementation, this is the Sun DLPI inter-
face [9]. It provides an interface to allow pro-
grams to transmit and receive raw datalink-
level frames. This system does not generate
any new network data, so only the receive ca-
pabilities are used. The system can gather
data from the network and encapsulate it in
a form that can be presented to the agents.
Above this lies the Network Primitives layer.

This takes the raw network data from the
DLPI interface and encapsulates it in such
a way so as to allow the agents to handle
it. The agents will require the values of var-
ious �elds in the network packet header, plus
a variety of aggregate values, such as aver-
age packet size, inter-packet arrival times and
time-of-day. These values must be either de-
rived from the packet data or from outside sys-
tem sources.
The agents operate above the Network

Primitives layer. Each agent is actually a pro-

6

Agents

being

trained

Training Module

Network Primitives Abstraction

Raw Network Layer (DLPI)

Operator providesHuman
feedback

Figure 1: Architectural Overview of Agents in the system

7

gram which can be represented as a parse tree
for a simple language. This language allows
the agents to inspect the contents of network
packets and perform operations based on this
information. The network packet information
is obtained from the underlying network prim-
itives layer. The actual mechanisms of this,
plus an example of an agent are described in
the Internal Design of the agents section.

Above this lies the Training Module. Before
the agents are allowed to monitor a system
they must be trained to correctly respond to
intrusions. They must also be trained to min-
imise the number of false positives (spurious
intrusion reports) generated. This involves hu-
man interaction with the agents via this mod-
ule. Once the agents have been trained they
can be placed in a system without this module
in place. The training is by a feedback mech-
anism | the operator provides an input de-
scribing whether the agents' actual behaviour
was close to the desired behaviour for the given
tra�c pattern presented to them. It is similar
to the training phase in neural networks.

6 Internal design of the

Agents

We propose using the Genetic Programming
[3] paradigm as a basis for the internal de-
sign of the agents. In this paradigm, popu-
lations of programs are evolved to solve a spe-
ci�c problem. The problem often has no sin-
gular correct solution, or the solution is very
expensive to compute. The possible solution
programs are represented as parse trees for
a simple meta-language and these parse trees
are manipulated by operations similar to those
found in natural genetics. After time the pop-
ulation of programs converges on a particular
program which gives the optimal solution to
the problem.

Figure 2 shows a simple parse tree for an
agent. This parse tree corresponds to the fol-
lowing block of pseudo-code:

for-each-packet do

if(ip-destination-address-of-packet

is-not-equal-to my-ip-address)

then generate-a-suspicion-broadcast

endif

endfor

The Terminals in the parse tree (the primi-
tives IP-DEST, MY-IP and RAISE) obtain their
values from the abstraction layer beneath the
agents (see Figure 1). In this simple ex-
ample, the primitive IP-DEST would obtain
the IP Destination address for the current
packet from the abstraction layer and then the
IP-NEQ function would compare that address
to the IP address of the system (given by the
MY-IP primitive).
What this simple agent does is to raise the

suspicion level (explained in the next section)
of all the agents if it sees a packet that arrived
at this machine, but had a di�erent IP desti-
nation address from the one on this system.
This may or may not be a useful thing to do,
but it may perform some function in conjunc-
tion with the other agents on the system at
the time.

6.1 Cooperation of multiple
agents

One of the key ideas behind the Autonomous
Agent approach is to evolve many agents at
the same time. This allows greater scope for

exibility, with each agent monitoring a small
aspect of the overall network tra�c (as in the
example above). However, the agents must co-
operate together in order to detect intrusions.
The above example probably does constitute
suspicious behaviour (how would a packet ar-
rive on this machine with an IP address di�er-
ent from our own, assuming only one network

8

IF

RAISEIP-NEQ

IP-DEST MY-IP

Packet Data

Example code for a simple
agent.

Packet data obtained from the
lower layers of the system.

Evaluate agent for each packet

to all other agents.
A broadcast message

Figure 2: Sample internal parse tree for an agent

9

interface?). In other cases it would take a cou-
ple of agents together to cover all aspects of
a possible intrusion (e.g. one agent monitors
for UDP packets, another looks at destination
ports in those packets and another monitors
to see where packets are coming from). To be
e�ective, these agents must be able to commu-
nicate their suspicion amongst themselves.
This is what the RAISE primitive does. It

indicates that this agent believes that there
is a possibly suspicious activity occurring
and wishes to notify the other agents about
this. As successive agents analyse the packet
data, they too maymake suspicion broadcasts.
Eventually the general level of suspicion will
rise above some pre-set threshold, and the sys-
tem will indicate a possible intrusion to the
operator.

7 Extending the approach

This section describes an example of how the
approach described above can be applied in a
more general case. There are three subsystems
being monitored in the system | the network,
the NFS device driver and the disk subsystem.
The network connection has an agent which
monitors the source address of incoming con-
nections. If it sees one it has not seen before,
it considers this as suspicious behaviour. Two
agents are monitoring the NFS server. One of
them analyses requests for NFS handles and
another is monitoring all write requests. Fi-
nally an agent is monitoring the disk subsys-
tem itself for writes to speci�c system direc-
tories. This is shown in Figure 3. Here an
intruder is attempting to use a valid NFS han-
dle to write to a system directory on the local
disk. The intruder is coming in over the net-
work from a previously unrecognised machine.

In this scenario, a write request comes in
from a system X which agent A has never seen
before. This causes the agent to become suspi-

cious | it raises its suspicion level and sends
a message out to other agents on the system.
In this case the network connection is to the
NFS server. This in itself is not enough to
make agent A trigger an intrusion alert. How-
ever, agent B is monitoring requests for NFS
handles and has received A's noti�cation of
suspicion. This, couples with its observation
of the NFS request from X makes agent B in-
crease its suspicion level, and broadcast this
to the other agents.

Agents C andD have received these previous
broadcasts and take them into account when
they monitor actions. When the intruder at
X issues a write request, agent C will have
su�cient evidence to raise its suspicion level
and broadcast this. Finally, when agent D sees
a write to a system directory, its suspicion level
has gone above a threshold value (due to all
the earlier broadcasts from the other agents)
and it will inform the operator of a possible
intrusion.

This shows how the agents can cooperate to
achieve the �nal goal of detecting an intrusion.
Notice how each agent monitors for very com-
mon activities | agent B is monitoring NFS
handle requests, a very common occurance in
a networked environment running NFS. How-
ever, it is only when a su�cient weight of ev-
idence is gathered by all the agents working
together that an alarm is raised.

How do agents move from a suspicious state
back to their normal state? The agents can
let their suspicion level decrease over time. If
an agent receives a suspicion broadcast, it will
increase its suspicion level. If this is not fol-
lowed up by any broadcasts from other agents,
then it will move back into its normal opera-
tion state and continue monitoring.

10

Network

NFS Server

Disk System

X

A

B C

D

incoming
NFS request

detects request from
unkown address

monitors requests
NFS handles

monitors write
requests

monitors write
to file systemsuspicion

broadcast

Figure 3: Active agents monitoring a NFS write request

11

8 Advantages and Disad-

vantages of the Au-

tonomous Agents ap-

proach

The advantages of the proposed system are nu-
merous. They are detailed below.

� Easily Tailored

By having many small agents which ob-
serve system behaviour the detection sys-
tem can be tailored to a system's needs in
the most e�cient way possible.

� Trainability

The ability to be trained is an advan-
tage in that the human operator can iden-
tify major threats to be monitored and
teach the agents to recognise these threats
above all others. Once the major threats
have been identi�ed, the agents are free to
evolve mechanisms to monitor for other,
less obvious threats.

� E�ciency

Obviously, users do not want a degrada-
tion in the performance of their system.
The individual agents must be optimised
to perform their monitoring in the most
unobtrusive way possible. The primi-
tives used by the agents are very simple
and can interface cleanly with an existing
network-layer interface. Once the train-
ing phase is complete, the agents will im-
pose a low overhead on the system.

� Fault Tolerance

If the system they were monitoring were
to fail, the agents would not lose any
state. As they encode their behaviour
internally as actual code, restarting the
agents would leave them in exactly the
same state as before. They can resume

monitoring the system without any degra-
dation in performance.

� Graceful degradation

Similarly, if some agents are compro-
mised, the system's defenses don't disap-
pear. A graceful degradation in the sys-
tem's ability to defend itself occurs - the
best that can be expected in a case such
as this.

� Resilience to subversion

If a defense system is subverted by an at-
tacker it is worse than useless - it gives
a false sense of security. But knowledge
of a particular agent on a system does
not give knowledge of the operation of
other agents - they all evolve under dif-
ferent conditions. Moving over to another
system means that the agents there are
slightly di�erent so it is not a simple mat-
ter to subvert them. This is an important
advantage.

� Extendible

The agents could easily be modi�ed to
operate in networked environment where
they actually migrated from system to
system over the network. They could
track anomalous behaviour over the net-
work, and also move to systems where
they would be most useful.

� Scalability

The agents approach scales nicely to
larger systems - simply add more agents
and increase their diversity. Taking the
whole notion to a network level also leads
to an interesting insight - network agents
which migrate around large networks and
monitor network tra�c for suspicious be-
haviour.

Of these the most important are, we believe,
the ease of tailoring agents to your system,
the resilience to subversion exhibited by agents

12

and the highly scalable nature of the agents
approach.

There are some drawbacks to the au-
tonomous agent approach. They impose an
overhead on the system as they will con-
sume both memory and CPU cycles in order
to monitor for intrusions. This is a cost of
any intrusion detection system however, and
the cost must be weighed up against the bene-
�ts of having a protection mechanism in place.
Training the agents to monitor the system
takes time. Unlike a solution which aims to
be generic for every system, the autonomous
agents will be tailored speci�cally for the sys-
tem being monitored. This means that time
must be spent analysing what is to be moni-
tored before the agents can be placed in the
system. The possibility of false positives

must be minimised so as to make the intrusion
detector a useful security tool. As in any intru-
sion detection system, if the agents are sub-
verted then the intrusion detector becomes a
security liability. Because the agents are dis-
tributed throughout the system and monitor
many di�erent system parameters, they are
more immune to this sort of attack.

We feel that these disadvantages are out-
weighed by the
exibility of our approach. As
this is a new �eld of investigation we feel that
there is much to be discovered by using this
paradigm for intrusion detection.

[Note to reviewers:

Experimental data should be

available by the final May

submission date. This will

be included in the final

version of this paper.]

9 Discussion

There are a number of advantages to having
many small agents as against a single large
one. A clear analogy can be drawn between
the human immune system and this proposal.
The immune system consists of many white
blood cells dispersed throughout the body.
They must attack anything which they con-
sider to be alien before it poses a threat to
the body. Sometimes it takes more than just
one white cell to actually destroy the attacker.
By having a large number of cells, the body is
always able to defend itself in the most e�-
cient way possible. If an infection occurs in
one area, then cells will move to that area so
as to �ght it.
We believe that this approach will lead to a

more e�cient and
exible approach to intru-
sion detection. It also appeals to our intuition
to look to Nature for guidance when faced with
tough design obstacles. This system is in the
spirit of Evolutionary Computing, and yet still
applicable to the Computer Security �eld. We
feel that this cross-�eld development is the key
to the advantages of this solution.
There are some issues that must be ad-

dressed as part of this research. Choosing the
various primitives necessary for the meta-
language in each agent will determine how well
they can monitor network tra�c. If the prim-
itives chosen are too low-level then the agents
may take longer to evolve more meaningful
detection mechanisms. However, if they are
at too high a level the agents may miss out
important data which could be used in de-
tecting a possible intrusion. For example, the
TCP sequence number spoo�ng attack could
be missed if the sequence number �eld was not
available to the agents [10].
How are the agents to detect the actual be-

haviour of other processes? Are they to run
in a protected mode, or are they just normal
user processes with extra privileges? Should

13

they gather their information from the stan-
dard system logs or will they use extra infor-
mation (from device drivers or kernel routines,
for example).
As every computer system is di�erent, the

ability of the agents to be trained is a ma-
jor advantage. How this is to be undertaken
will be investigated, as the e�ectiveness of the
training will in
uence the ability of the agents
to protect the system. Currently a \learning-
by-feedback" model is proposed where a hu-
man operator will evaluate the agents based
on their ability to detect known intrusions.

The issues of testing and maintenance

will be considered, along with other issues such
as how the agents are to interface with their
operator and what level of knowledge will the
operator need to e�ectively operate the agents.
It is desired that the agents can be trained and
installed without requiring extensive knowl-
edge of genetic programmingor security. How-
ever, for this initial prototype some knowledge
may be required.

Once a working prototype is built, feasibility
studies will be conducted to see whether a full
version of the system would be practical.

References

[1] R. Heady, G. Luger, A. Maccabe, M.
Servilla. The architecture of a network
level intrusion detection system. Techni-
cal Report, University of New Mexico,
Department of Computer Science, August
1990.

[2] David Goldberg. Genetic Algorithms
in Search, Optimization and Machine
Learning. Addision-Wesley, 1989.

[3] John Koza. Genetic Programming: On
the Programming of Computers by means
of Natural Selection. MIT Press, 1992.

[4] Jeremy Frank. Arti�cial Intelligence and
Intrusion Detection: Current and Future
Directions. Division of Computer Science,
University of California at Davis, CA
95616.

[5] T. Lunt, H. Javitz, A. Valdes et al.
A Real-time Intrusion-Detection Expert
System (IDES), SRI International Tech-
nical Report, SRI Project 6784, February
28, 1992.

[6] Sandeep Kumar, Gene Spa�ord. A Pat-
tern Matching model for Misuse Intru-
sion Detection, Proceedings of the 17th
National Computer Security Conference,
October 1994.

[7] Je�rey O. Kephart. A Biologically In-
spired Immune System for Computers.
High Integrity Computing Laboratory,
IBM Thomas J. Watson Research Cen-
ter, P.O. Box 704, Yorktown Heights, NY
10598. To appear in Arti�cial Life IV, R.
Brooks and P. Maes, eds., MIT Press,
1994.

[8] W.Z. Venema, TCP WRAPPER, net-
work monitoring, access control and booby
traps, UNIX Security Symposium III Pro-
ceedings (Baltimore), September 1992.

[9] Neal Nuckolls, How to use DLPI, Internet
Engineering, SUN Microsystems.

[10] Steven Bellovin Security Problems in the
TCP/IP Protocol Suite, AT&T Bell Lab-
oratories, Murray Hill, New Jersey 07974.
Computer Communication Review, Vol.
19, April 1989.

[11] Pattie Maes Modeling Adaptive Au-
tonomous Agents, Arti�cial Life, Vol 1
No. 1/2, Ed: Christopher Langton, MIT
Press, 1993.

14

