
The Design and Implementation of Tripwire:

A File System Integrity Checker

Purdue Technical Report CSD-TR-93-071

Gene H. Kim and Eugene H. Spa�ord

COAST Laboratory

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907{1398

November 19, 1993

Abstract

At the heart of most computer systems is a �le system. The �le system contains user data,
executable programs, con�guration and authorization information, and (usually) the base exe-
cutable version of the operating system itself. The ability to monitor �le systems for unautho-
rized or unexpected changes gives system administrators valuable data for protecting and main-
taining their systems. However, in environments of many networked heterogeneous platforms
with di�erent policies and software, the task of monitoring changes becomes quite daunting.

Tripwire is tool that aidsUNIX1 system administrators and users in monitoring a designated
set of �les and directories for any changes. Used with system �les on a regular (e.g., daily) basis,
Tripwire can notify system administrators of corrupted or altered �les, so corrective actions may
be taken in a timely manner. Tripwire may also be used on user or group �les or databases to
signal changes.

This paper describes the design and implementation of the Tripwire tool. It uses inter-
changeable \signature" routines to identify changes in �les, and is highly con�gurable. Tripwire
is no-cost software, available on the Internet, and is currently in use on thousands of machines
around the world.

1 Introduction

Most modern computer systems incorporate some form of long-term storage, usually in the form
of �les stored in a �le system. These �les typically contain all of the long-lived data in the system,
including both user data and applications, and system executables and databases. As such, the

1
UNIX is a trademark of Novell. This week.

1

�le system is one of the usual targets of an attack. Motives for altering system �les are many.
Intruders could modify system databases and programs to allow future entry. System logs could be
removed to cover their tracks or discourage future detection. Compromised security could lead to
degradation or denial of services. Modi�cation or destruction of user �les might also compromise
aspects of the security policy. As such, the security administrator needs to closely monitor the
integrity of the �le system contents.

The near-ubiquitous UNIX system is an example of a �le system where such monitoring is
useful. Flaws and weaknesses in typical UNIX systems are well-documented (e.g., [8, 22, 17, 4, 9]).
UNIX �le systems are susceptible to threats in the guise of unauthorized users, intruders, viruses,
worms, and logic bombs as well as failures and bugs. As such, UNIX system administrators are
faced with prospects of subtle, di�cult-to-detect damage to �les, malicious and accidental.

Tripwire is an integrity checking tool designed for the UNIX environment to aid system ad-
ministrators to monitor their �le systems for unauthorized modi�cations. First made available
on November 2, 1992, it has proven to be a popular tool, being portable, con�gurable, scalable,

exible, manageable, automatable, and secure. It was written in response to repeated break-in
activity on the Internet, and the di�culty experienced by a�ected administrators in �nding all of
the \backdoors" left by the intruders.

The foundations of integrity checking programs are surveyed in [2]. In simplest terms, a database
is created with some unique identi�er for each �le to be monitored. By recreating that identi�er
(which could be a copy of the entire �le contents) and comparing it against the saved version, it is
possible to determine if a �le has been altered. Furthermore, by comparing entries in the database,
it is possible to determine if �les have been added or deleted from the system.

As described in [9], a checklist is one form of this database for a UNIX system. The �le contents
themselves are not usually saved as this would require too much disk space. Instead, a checklist
would contain a set of values generated from the original �le | usually including the length, time
of last modi�cation, and owner. The checklist is periodically regenerated and compared against
the saved copies, with discrepancies noted. However, as noted in [9], changes may be made to the
contents of UNIX �les without any of these values changing from the stored values; in particular,
a user gaining access to the root account may modify the raw disk to alter the saved data without
it showing in the checklist.

E�ciently detecting changes to �les under these circumstances can be done by storing a value
calculated from the contents of the �les being monitored. If this value is dependent on the entire
contents of the �le and is di�cult to match for an arbitrary change to the �le, then storing this value
is su�cient. This �ngerprint or signature of the �le can then be saved instead of the �le contents.2

The signature function(s) used should be computationally simple to perform, but infeasible to
reverse. It should signal if the �le changes but be su�ciently large as to make a change collision
unlikely. Signature functions and methods are discussed in [21, 16, 9, 15, 4, 7, 14].

2Some contend that the term signature should be used only when referring to functions that have roots in crypto-

graphic methods. In this paper, we use the term in a more general connotation: the �xed-size \�ngerprint" generated

by a function using the contents of a �le as its input data.

2

Although various candidate signature functions have been studied over the past few years, we
were unaware of any tool in general use that used these methods under UNIX. This led to the
design of Tripwire.

2 Problem De�nition

Ultimately, the goal of integrity checking tools is to detect and notify system administrators of
changed, added, or deleted �les in some meaningful and useful manner. The success of such a tool
depends on how well it works within the realities of the administration environment. This includes
appropriate
exibility to �t a range of security policies, portability to di�erent platforms in the
same administrative realm, and ease of use. We also believe that it is important that any such tool
present minimal threat to the system on which it was used; if the tool were to be read or executed
by an attacker, it should not allow the system to be compromised.

From this basic view, we identi�ed several classes of issues for further study.

2.1 Administration issues

It is not uncommon for system administrators to have sites consisting of hundreds of networked
machines. These machines may consist of di�erent hardware platforms, operating systems, releases
of software, and con�gurations of disks and peripherals. Some machines are critical because of
their specialized functions, such as mail and �le services. These variables increase the complexity
of administration.

Furthermore, system administrators manage these machines within the con�nes of local policies,
dictating backups, user accounts, access, and security. Even small sites may have di�erent policies
for machines based on their roles.

To administer these machines, con�gurations may be classi�ed into logical classes based on their
purpose (e.g., desktop machines, �le servers). This maximizes potential con�guration reuse and
reduces opportunities for error.

A well-designed tool must work within these conditions. It must be scalable to networks consist-
ing of hundreds of machines. The tool must be
exible to handle di�erent and unique con�gurations,
at some cost to complexity. However, appropriate support for reuse helps to reduce complexity and
exploit existing commonality of logical classes of machines. Thus, an integrity tool should be both
able to handle many special-case con�gurations and to support reuse of con�guration information
based on common characteristics.

2.2 Reporting issues

To aid in the detection of the appropriate threats, system administrators would use an integrity
checker to monitor �le systems for added, deleted, and changed �les. Meaningfully reporting

3

changed �les is di�cult, because most �les are expected to change: system log �les are written
to, program sources are updated, and documents are revised. Typically, these changes would not
concern system administrators. However, changes to certain �les, such as system binaries, might
elicit a di�erent reaction.

Similarly, changes to certain �le attributes (stored in the �le's inode structure [1]) occur fre-
quently and are usually benign. A tool reporting every changed �le potentially forces security
administrators to interpret large amounts of data. Interpreting needlessly large reports cluttered
with unimportant information increases the risk of genuinely interesting and noteworthy reports
being lost or missed.3

For example, consider the tedium imposed by a scheme that requires system administrators to
search for reports of potentially dangerous �le ownership changes, obscured by reports of thousands
of �les whose access timestamp changed. However, in some of those cases, changes to a �le's access
timestamp may be of great interest. For instance, \trap �les" could be placed as tripwires against
snooping intruders.4 If the system is properly con�gured, security administrators could learn when
an intruder or local \snooping" user has accessed the trapped �le, thus unavoidably updating the
�le's timestamp.

Supplying some form of global �lter to the output of the monitor program might help reduce
the reports to a more manageable volume. There are di�culties with this approach, however. It
may not be possible to write general rules that remove noise while adequately preserving interesting
events. Global �lter rules may prevent system administrators from carrying out local, and possibly
very unusual, policies. We believe it is better to generate only those events of interest rather than
�lter meaningful events from a collection of all possible events.

2.3 Database issues

The database used by the integrity checker should be protected from unauthorized modi�cations; an
intruder who can change the database can subvert the entire integrity checking scheme. Although
the system administrator can secure the database by storing it on some media inaccessible to
remote intruders (e.g., paper printout), usability is sacri�ced. A database stored in some machine
readable format may risk unauthorized modi�cation, but allows the integrity checking process to be
automated. Storing the database on read-only media provides the best of both approaches, allowing
machine access but preventing changes. This also will allow users to use the tool to monitor their
own �les, if they wish.

After a reported �le addition, deletion, or change is determined to be benign, the database
should be updated to re
ect the change. This prevents the change from appearing in future reports.
Furthermore, comparisons for changed �les should be made with up-to-date information. Updating
a database stored on read-only media poses obvious procedural di�culties. The integrity checking
protocol must allow some mechanism or procedure for the secure installation of updated databases.

3This is quite similar to the problem of audit trail reduction.
4Hence the original motivation for the name \Tripwire."

4

Because �les systems are dynamic in nature, their associated databases may require updating
often. Therefore, updating speci�c entries should not require regenerating the entire database. As
many �les may change, enumerating each �le to be updated could be tedious. Tedium should be
avoided to encourage and support use of the tool.

The database should contain no information that allows an intruder to compromise the integrity
checking scheme. This allows databases to be shipped with software distribution packages, whose
circulation can not be easily restricted.

2.4 File signature issues

Selection of appropriate signatures to use in an integrity checking tool should help engender trust
in the tool. Thus, it is important to address issues related to the selection of one or more functions
to generate the �le signatures.

2.4.1 Change detection

A simple method for detecting a changed �le is comparing it against a previously made copy. This
has the advantage of giving system administrators the ability to tell exactly what change was made
to the �le. However, this method is resource and time intensive, potentially doubling the space
used by the �le system and necessitating further support from system administration sta�. In many
cases, knowing that a change has been made is all that is necessary.

A more e�cient method would record the �le's �xed-size signature in the database. One conse-
quence of �xed-sized signatures is multiple mappings: for any given signature generated by a �le,
there are many (possibly in�nite) other �les of varying sizes that also generate that same signature.
What is important here is that the functions be chosen such that it is highly unlikely that an
attacker could alter a �le in such a way that it coincidentally retains its original signatures.

2.4.2 Signature spoo�ng

Intruders could modify a �le and remain undetected in an integrity checking scheme using �le
signatures if the �le can be further modi�ed to generate the same signature as the original. Two
methods for �nding such a modi�cation are brute force search, and inverting then spoo�ng the
signature function.

Given a modi�ed �le, someone using a brute force search would iteratively scan for an o�setting
change in the �le that yields the desired signature. For a signature of size n bits, on average, one
might expect to perform 2n�1 attempts to �nd such a signature collision.

For small �les, this search is a trivial operation using high-speed, general-purpose workstations.
Consider the case of �nding a duplicate signature for the /bin/login program under SunOS 4.1.
This is a 47 kilobyte binary �le. Using a SparcStation 1+ (a common 12.5 MIPS machine), a

5

Frequency of Signature Collisions

(254,686 signatures)

Number of collisions
Signature

1 2 3 4 5 6 7 8 >9
Total

16-bit checksum (sum) 14177 6647 2437 800 235 62 12 2 1 24375
16-bit CRC 15022 6769 2387 677 164 33 5 0 0 25059
32-bit CRC 3 1 1 0 0 0 0 0 0 5
64-bit DES-CBC 1 1 0 0 0 0 0 0 0 2
128-bit MD4 0 0 0 0 0 0 0 0 0 0
128-bit MD5 0 0 0 0 0 0 0 0 0 0
128-bit Snefru 0 0 0 0 0 0 0 0 0 0

Table 1: Collision frequencies of signatures gathered from �le systems at Purdue University and
Sun Microsystems, Inc.

duplicate 16-bit CRC (Cyclic Redundancy Checkcode) signature preserving the �le's length can be
found in 0.42 seconds. A duplicate 32-bit CRC signature can be found in four hours.

However, exhaustive search becomes unnecessary if one exploits knowledge of the workings of
the signature function itself. By understanding how a function generates a signature, one could
reverse-engineer the function. For any desired signature, an intruder could reverse the signature
function and generate an arbitrary �le that also yields that signature[14].

For these reasons, message-digest algorithms (also known as one-way hash functions, �nger-
printing routines, or manipulation detection codes) as described in [7, 15, 14] become valuable as
integrity checking tools. Message-digests are usually large, often at least 128 bits, and computa-
tionally infeasible to reverse.

2.4.3 Empirical results

Table 1 shows signature collision frequencies for 254,686 �les. These signatures were gathered
from �le systems residing on �ve computers at Purdue University and two computers at Sun Mi-
crosystems, Inc. These �les were in active user directories and source trees, and are a representative
sampling of �les residing on large, timeshared, general purpose servers and large �le servers used
as source repositories.

Each �le examined had its signatures generated using (in order) the 16-bit SunOS sum command,
two standard CRC algorithms, the �nal 64 bits from a DES-CBC[6] encoded version of the �le, and
the 128-bit values taken from standard message digest functions. The large number of collisions for
the 16-bit signatures, and the absence of any collisions for the 128-bit signatures, helps to con�rm
our belief that larger signatures are unlikely to collide by accident.

We also generated empirical support of the di�culty of spoo�ng 128-bit signatures. An attempt

6

was made to �nd a duplicate Snefru[14] signature for the /bin/login program using 130 Sun
workstations.5 Over a time of several weeks, 17 million signatures were generated and compared
with ten thousand stored signatures, the maximum number of signatures that �t in memory without
forcing virtual memory page faults on each search iteration. Approximately 224 signatures were
searched without �nding any collisions, leaving approximately 1015 remaining unsearched.

2.5 Performance and resource issues

Detecting �le tampering by comparing each �le against a duplicate copy is easy to do, but requires
considerable storage and time. Generating and comparing �le signatures may require more com-
putation, but it requires less storage. Some signature functions are quite expensive to execute in
software, while others are simpler. Local policy should dictate the signatures and resources used
to satisfy the level of trust desired.

2.6 Other issues

Security tools should be completely self-contained, needing no auxiliary programs to run. For
example, an integrity checker that depends on utilities such as diff or sum could be subverted if
either of those programs were compromised. Thus, by making this tool self-contained, it would be
possible to run the program without relying on outside, potentially vulnerable, helper programs.

The database for the tool should be human-readable. This not only provides an alternate means
of checking the database for potential tampering (e.g., comparison against a printed copy), but it
also provides a means for users to verify individual �les. By including a standalone program to
apply the signature functions to an arbitrary �le, a user could compare this against the signature
database.

The program should be able to run without privilege, possibly on a user's private set of �les.
Additionally, it should only report, and not e�ect, changes. Although a user could use the tool's
output to drive changes, the tool itself would not provide any explicit means of making alterations
to the system. This was also one of the principles at the heart of the COPS tool,[8] and one which
we believe contributed greatly to its wide-spread acceptance and use.

3 Existing Tools

Most available UNIX security tools fall into two categories: static audit tools and integrity checkers.
Among the most prominent are COPS[8], TAMU[20], crc check[8], Hobgoblin[13], and ATP[25].6

A few commercial security tools also exist, but they are comparable to the user-community tools

5We measured a Sun SparcStation 1 as capable of generating 37 Snefru signatures per second
6SPI, a widely-used tool developed by the U. S. Department of Energy and the U. S. Air Force, is not discussed

in this paper; future releases of SPI are to be based on the COPS tool.

7

mentioned here. While many of these tools may be outstanding in their own right, most are
mismatches for integrity checking in UNIX environments.

3.1 COPS

COPS serves as a good benchmark for static audit tools. Freely distributed since 1989, it is
widely used and supports a large number of UNIX platforms. It is comprehensive, con�gurable,
and thorough. However, as a static audit tool, it does not aid in intrusion detection other than
identifying known avenues of penetration.

The lack of integrity monitoring in COPS was addressed after its release by the addition of the
crc check program. It is a \checklisting" program, similar to the shell scripts described in [9, 4]. It
is based on a simple CRC checksum of the �les being monitored. Numerous problems prevent it
from being a comprehensive integrity checking solution as we have outlined in the previous sections.

Most obvious is the lack of extensibility and
exibility in crc check. It is impossible to update
a database entry without regenerating the entire database. Experience has shown that a more
sophisticated program is necessary to be useful. For larger sites, maintaining crc check is especially
tedious.

crc check does not allow all the �elds in the UNIX �le inode structure to be monitored. This
prevents certain changes from being monitored. Furthermore, the reporting cannot be tailored
within crc check. Although �lter programs can be written to transform the output, relying on
outside programs that can be subverted introduces another point of compromise.

The use of CRC signatures are poorly suited for integrity checking. Originally intended for
hardware-based error-detection, CRC functions were designed to detect multiple bit errors in a data
stream (e.g., [3]). Reversing the CRC function to yield a desired signature is a well-understood
process, and tools to assist a potential intruder are widely available[10].

3.2 TAMU

TAMU is a set of security utilities being distributed by Texas A&M University.[20] Included in
the package is a static audit tool, a signature database to check system binaries against known
signatures of patch �les, and a sophisticated network tra�c analyzer that aids system administrators
in assessing outside threats.

TAMU is shipped with a database of signatures for system binaries of popular operating systems.
TAMU compares signatures of critical system �les against those stored in its database to determine
whether they match any of the known versions. TAMU can thus notify the security administrators
of binaries with security patches that have not been installed by the operating system vendor as
determined by records in its signature database.

TAMU is more specialized than most integrity checkers, but requires that its database be up-
dated as new operating system versions and patches are released. Although this tool provides

8

valuable information to system administrators, it is not a general-purpose integrity checker: it
provides no facilities to scan the entire �le system for changes.

3.3 Hobgoblin

Hobgoblin was written as tool to aid system administrators in enforcing local �le system policies.[13]
For instance, when more than one person is allowed to install and delete �les, it becomes di�cult
to track changes. Hobgoblin can assist in tracking these changes.

Hobgoblin uses a template description that speci�ed �les and directories are expected to match.
It then scans those �les to check whether the �les match the descriptions. In this manner, any
changes can be reported to the system administrator.

Hobgoblin does not have all the capabilities associated with integrity checkers: detecting added
and deleted �les is not straightforward in Hobgoblin. There is no existing interface for storing a
�le's signature in the database. Furthermore, Hobgoblin assumes that �les in its database do not
change often. Because of this, no provisions for updating the database exist. This makes its use in
dynamic �le systems di�cult.

3.4 ATP

A recent paper describes a forthcoming program for UNIX, named ATP.[25] It employs a dual
signature to verify �les, using a 32-bit CRC and the MD5 message digest algorithm. The ATP
database is encrypted using DES in Cipher Block Chaining mode, and is checksummed to detect
tampering and prevent unauthorized updates. However, this prevents its use in an automated
manner: the secure entry of the encryption key requires human intervention or else storage in the
�le system | thus compromising the entire program. The lack of any mechanisms for updating
the database potentially makes maintenance as tedious as crc check.

An interesting design decision was introduction of action lists. Having detected a changed �le,
ATP can automatically change the ownership to root and make it inaccessible to all users. This
feature makes ATP unique among the security tools listed in this section, because it does more
than report potential dangers. Provided that the actions are suitable under local policies, this
automated form of damage control could be very useful to system administrators. However, as
we noted earlier, this is of questionable utility. Accidental triggering of the rules and malformed
actions are two dangers in such a mechanism. Furthermore, a determined attacker might well be
able to exploit this mechanism to perform denial-of-service attacks.

4 Implementation of Tripwire

Tripwire was written over a period of two months in 1992. It was released in the fall of 1992 to
a group of over one hundred beta testers around the world who provided valuable feedback on its

9

portability and features. Several bugs have been identi�ed, and four updates were released in 1993.
In December 1993, the formal release of Tripwire was made.

This section describes the structure of Tripwire. A high level model of Tripwire operation is
shown in Figure 1. This shows how Tripwire uses two inputs: a con�guration describing �le system
objects to monitor, and a database of previously-generated signatures putatively matching the
con�guration. Selection-masks (described below) specify �le system attributes and signatures to
monitor for the speci�ed items.

Tripwire report

tw.config
 file

 newly
generated
 database

compare apply
select−masks

 old
database

generate

Files residing on system

Figure 1: Diagram of high level operation model of Tripwire

4.1 Administrative model

4.1.1 Portability

Because of the heterogeneous nature of computer equipment at most sites, the design of Tripwire
emphasized program and database portability. The code is written in the standard K&R C pro-
gramming language,[12] adhering to POSIX standards wherever possible. The result is a program
that compiles and runs on at least 28 BSD and System-V variants of UNIX, including Xenix and
Unicos.

Tripwire database �les are encoded in standard ASCII and are mostly human readable. They
are completely interoperable (i.e., �les generated on one platform can be read and used on other
platforms). This allows the database �les to be printed using standard software, compared using
standard text tools, and examined using other standard tools.

Generating correct signatures is complicated by architectural di�erences in byte-ordering (i.e.,
big-endian vs. little endian). An automated installation procedure generates macros and header
�les so that the signatures generated are uniform; the standard \network-order" byte order used in

10

the IP protocol suite is our underlying model. This allows database �les to be used on machines
di�erent from those on which they are generated, if this should be desired (and as might be the
case with some networked �le systems and software distributions).

A comprehensive test suite is included in the Tripwire distribution to con�rm correct signature
generation. The test suite also checks each �le in the distribution against those stored in a database,
ascertaining each �le's integrity. This serves both to check the consistency of the distribution, and
to ensure that all features of the Tripwire program are working as expected.

4.1.2 Scalability

Tripwire includes an M4-like preprocessing language [11] to help system administrators maximize
reuse of con�guration �les. By including directives such as \@@include", \@@ifdef", \@@ifhost",
and \@@define", system administrators can write a core con�guration �le describing portions of
the �le system shared by many machines. These core �les can then be conditionally included in
the con�guration �le for each machine.

To allow the possible use of Tripwire at sites consisting of thousands of machines, con�guration
and database �les do not need to reside on the actual machine. Input can be read from �le
descriptors, open at the time of Tripwire invocation. These �le descriptors can be connected to
UNIX pipes or network connections. Thus, a remote server or a local program can supply the
necessary �le contents. Supporting UNIX style pipes also allows for outside programs to supply
encryption and compression services | services that we do not anticipate including as a standard
part of the core Tripwire package.

Tripwire does not encrypt the database �le so as to ensure that runs can be completely auto-
mated (i.e., no one has to type in the encryption key every night at 3 a.m.). Because the database
contains nothing that would aid an intruder in subverting Tripwire, this does not undermine the
security of the system. However, if Tripwire is used in an environment where the database is
encrypted as a matter of policy, the interface supports this, as described above.

4.1.3 Con�gurability and
exibility

Tripwire makes a distinction between the con�guration �le and the database �le. Each machine
may share a con�guration �le, but each generates its own database �le. Thus, identically con�gured
machines can share their con�guration database, but each has its integrity checked against a per-
machine database.

Because of the preprocessor support, system administrators can write Tripwire con�guration
�les that support numerous con�gurations of machines. Uniform and unique machines are similarly
handled. This helps support reuse and minimize user overhead in installation.

The con�guration �le for Tripwire, tw.config, contains a list of entries, enumerating the
set of directory (or �les) to be monitored for changes, additions, or deletions. Associated with each
entry is a selection-mask (described in the next section) that describes which �le (inode) attributes

11

can change without being reported as an exception. An excerpt from a set of tw.config entries is
shown in Figure 2.

file/dir selection-mask

/etc R # all files under /etc

@@ifhost solaria.cs.purdue.edu

!/etc/lp # except for SVR4 printer logs

@@endif

/etc/passwd R+12 # you can't be too careful

/etc/mtab L # dynamic files

/etc/motd L

/etc/utmp L

=/var/tmp R # only the directory, not its contents

Figure 2: An excerpt from a tw.config �le

Pre�xes to the tw.config entries allow for pruning (i.e., preventing Tripwire from recursing into
the speci�ed directory or recording a database entry for a �le). Both inclusive and non-inclusive
pruning are supported; that is, a directory's contents only may be excluded from monitoring, or
the directory and its contents may both be excluded.

By default, all entries within a named directory are included when the database is generated.
Each entry is recorded in the database with the same
ags and signatures as the enclosing, speci�ed
directory. This allows the user to write more compact and inclusive con�guration �les. Some users
have reported using con�guration �les of a simple /, naming all entries in the �le system!

4.2 Reporting model

The tw.config �le contains the names of �les and directories with their associated selection-mask.
A selection-mask may look like: +pinugsm12-a. Flags are added (\+") or deleted (\-") from the
set of items to be examined.

Tripwire reads this as, \Report changes in permission and modes, inode number, number of
links, user id, group id, size of the �le, modi�cation timestamp, and signatures 1 and 2. Disregard
changes to access timestamp."

A
ag exists for every distinct �eld stored in an inode. Provided is a set of templates to allow
system administrators to quickly classify �les into categories that use common sets of
ags:

read-only �les Only the access timestamp is ignored.

log �les Changes to the �le size, access and modi�cation timestamp, and signatures are ignored.

12

changed: -rw-r--r-- root 20 Sep 17 13:46:43 1993 /.rhosts

Attr Observed (what it is) Expected (what it should be)

=========== ============================= =============================

/.rhosts

st_mtime: Fri Sep 17 13:46:43 1993 Tue Sep 14 20:05:10 1993

st_ctime: Fri Sep 17 13:46:43 1993 Tue Sep 14 20:05:10 1993

Figure 3: Sample Tripwire output for a changed �le

growing log �les Changes to the access and modi�cation timestamp, and signatures are
ignored. Increasing �le sizes are ignored.

ignore nothing self-explanatory

ignore everything self-explanatory

Any �les di�ering from their database entries are then interpreted according to their selection-
masks. If any attributes are to be monitored, the �lename is printed, as are the expected and
actual values of the inode attributes. An example of Tripwire output for changed �les is shown in
Figure 3.

A \quiet option" is also available through a command-line option to force Tripwire to give terse
output. The output when running in this mode is suitable for use by �lter programs. This allows
for automated actions, similar to those allowed in ATP if it is really desired. One example would be
to use the terse output of Tripwire after a breakin to quickly make a backup tape of only changed
�les, to be examined later.

By allowing reporting to be dictated by local policy, Tripwire can be used at sites with a very
broad range of security policies.

4.3 Database model

Tripwire uses two databases: the con�guration �le and the output database. The design and
intended use of both of these �les is described in this section.

4.3.1 Inviolability

Tripwire uses an unencrypted database that can be world-readable. To prevent the database from
being altered, it should be stored on some tamper-proof media. One method of accomplishing this
involves storing the databases on a write-protected disk or on a \secure server" where logins can be
strictly controlled. The database could also be made available via a read-only remote �le system
(e.g., read-only NFS [23]).

13

Installing an updated database is problematic because intruders might replace the database (or
selected entries) with one of their own choosing during the update. Therefore, to best ensure the
security of the database, the Tripwire documentation suggests that the machine be operated in
single-user mode to install the database. System administrators can thus choose greater security
over ease-of-use, allowing for the possible enforcement of even the most severe policies.

4.3.2 Semantics

Changes to the database can be categorized into six cases, as shown in Table 2. For each of
these cases, an appropriate action is taken, based on whether the �le is a tw.config entry, and
whether the �le exists in the old and newly generated databases.

Updating or deleting a �le from the database is straightfoward | the database entry for the
�le is replaced by a new entry re
ecting the current state of the �le. Adding �les is more complex
as there is no associated selection-mask for the �le (i.e., there is no tw.config entry for it). To
resolve this, Tripwire scans the list of tw.config entries and chooses the \closest" ancestor entry,
whose selection-mask it inherits. If no such entry can be found, the �le is added with a default
selection-mask.

Adding, deleting, and updating entries is also simple. All the �les in the database that were
generated from the given entry are also added, deleted, or updated, appropriately. The updates
are done to a copy of the �le in case of some system failure. The user must then replace the old
database with the modi�ed version.

4.3.3 Interface

Specifying �les to be updated can be done via the command-line. Tripwire also has an interactive
update mode where the user is asked whether the database entry should be changed for each
changed, added, or deleted �le. This allows the system administrator to easily update the database,
and ensures that no �les are inadvertently updated without review. Updating the database is a

Filename exists in:
tw.con�g old newly generated Interpreted action
entry database database

x Added �le

x Deleted �le

x x Updated �le

x Added entry

x x Deleted entry

x x x Updated entry

Table 2: Enumeration of possible Tripwire update states.

14

process that should not be overly automated because its careful review is as important as reports
of changed �les.

4.4 Signatures model

Tripwire has a generic interface to signature routines and supports up to ten signatures to be
used for each �le. The following routines are included in the latest Tripwire distribution: MD5[19]
(the RSA Data Security, Inc. MD5 Message-Digest Algorithm), MD4[18] (the RSA Data Security,
Inc. MD4 Message-Digest Algorithm), MD2 (the RSA Data Security, Inc. MD2 Message-Digest
Algorithm),7 Snefru[14] (the Xerox Secure Hash Function), and SHA (the NIST proposed Secure
Hash Algorithm). Tripwire also includes POSIX 1003.2 compliant CRC-32 and CCITT compliant
CRC-16 signatures.

Each signature may be included in the selection-mask by including its index. Because each
signature routine presents a di�erent balance in the equation between performance and security,
the system administrator can tailor the use of signatures according to local policy. By default,
MD5 and Snefru sigantures are recorded and checked for each �le. However, di�erent signatures
can be speci�ed for each and every �le. This allows the system administrator great
exibility in
what to scan, and when.

Also included in the Tripwire distribution is siggen, a program that generates signatures for
the �les speci�ed on the command line. This tool provides a convenient means of generating any
of the included signatures for any �le.

The code for the signature generation functions is written with a very simple interface. Thus,
Tripwire can be customized to use additional signature routines, including cryptographic checksum
methods and per-site hash-code methods. Tripwire has room for 10 functions, and only seven are
preassigned, as above.

4.5 Performance

Tripwire allows local policy to dictate which signatures are compared against the database. Which
signatures to be used can be speci�ed at run-time, as well as in the tw.config, allowing
exible
policies to be used without modifying con�guration �les. For example, Tripwire could compare
CRC32 signatures hourly, and compare MD5 and Snefru signatures daily, needing only two cron

entries with the appropriate command line arguments to Tripwire.

7The copyright on the available code for MD-2 strictly limits its use to privacy-enhanced mail functions. RSA Data

Security, Inc. has kindly given us permission to include MD-2 in the Tripwire package without further restriction or

royalty.

15

5 Tripwire usage

This section summarizes the procedure of building, installing, and using Tripwire on a single ma-
chine. This procedure assumes a system administrator who is interested in the maximum level of
assurance possible using Tripwire.

5.1 Building Tripwire

First, the administrator would load a clean distribution of the operating system and utilities onto an
isolated machine (disconnected from any network, and running in single-user mode). After unpack-
ing the Tripwire distribution, the administrator edits the top level Make�le[24] to specify system-
speci�c tools (e.g., compiler, compiler
ags, etc.). Next, the user would choose a conf-machine.h

header �le that describes special options for the machine to be monitored. Currently, 23 machine-
speci�c header �les are included; writing a customized header �le for a machine not included in
this group is a simple procedure for someone with moderate programming skill, and we have been
encouraging the authors of such �les to share them with us for use in later releases.

After con�guring Tripwire in this fashion, system administrators type \make" to build the
Tripwire binaries. After these �les are compiled, typing \make test" starts the Tripwire test suite.
This test suite exercises all the signature routines to ensure correct signature generation, and then
compares all the Tripwire source �les against a test database to ensure distribution integrity.

5.2 Installing the database

After building Tripwire, the system administrator should build the system database. The �le
tw.config contains a listing of all the directories and �les to be scanned, along with their associ-
ated selection-masks. Generalized tw.config �les are provided for eight common UNIX versions
(including generic BSD and SVR4). These �les cover the most critical system �les and binaries.

After choosing and reviewing this �le, the administrator can make his own customizations
and additions. After all additions have been made, it is time to create the database. In single-
user mode still, so that no user can tamper with the �les or system, the user types \tripwire
-initialize" and waits for Tripwire to �nish scanning and recording information on the �les
listed in the tw.config �le.

When this is completed, Tripwire reports where the database has been stored, and reminds the
user to move the database to read-only media. After having done so, and copied the con�guration
�le and Tripwire binary itself to read-only, the system administrator has successfully installed the
database, and can bring the machine back up in multi-user mode.

16

5.3 Checking the �le systems

When running in integrity checking mode, Tripwire rereads the tw.config and the database �les,
and then scans the �le system to determine whether any �les have added, deleted, or changed.
System administrators type \tripwire" to generate a report of these �les. This must be done in
such a way as to ensure that the protected, original version of Tripwire is the one that is run.

Alternatively, typing \tripwire -interactive" will run Tripwire in interactive update mode.
In this mode, Tripwire scans for added, deleted, or changed �les, and for each such �le, the user is
asked whether or not the entry should be updated. A new database is created, and again, a warning
noti�es the user to install it on read-only media to ensure the security of the database. Note that
Tripwire does not overwrite the existing database. Further note that our system administrator
should perform this function in stand-alone mode to maximize protection of the database.

Tripwire is designed so that any user can safely execute it | the database �le can be pub-
lic information, and the binaries require no special privileges to run. If local policy deems this
inappropriate, both the database and Tripwire binaries can be made readable and executable by
only system administrators. However, by disabling use of Tripwire by general users, they are like-
wise unable to run the program to monitor their own databases and applications which might not
otherwise be covered by the system-wide monitoring.

6 Experiences

Since the initial release, four versions have been released to incorporate bug �xes, support additional
platforms, and add new features. The authors estimate Tripwire is being actively used at several
thousand sites around the world. Retrievals of the Tripwire distribution from our FTP server
initially exceeded 300 per week. Currently, seven months after the last o�cial patch release, we see
an average of 25 fetches per week. This does not include the copies being obtained from the many
FTP mirror sites around the net.

More data on active Tripwire usage can be gleaned from bug reports. The most recent patch to
Tripwire included code to check for certain rare and erroneous boundary conditions, displaying a
banner that asked the user to mail the output to the authors when found. Although the associated
bug is now �xed and a corrective patch distributed, the authors still receive about two of the
requested bug reports per day. From this information, we can only surmise that Tripwire use is
growing. (The error condition is only triggerd when very large databases exceeding 7000 entries
are used.)

Tripwire has proven to be highly portable, successfully running on over 28 UNIX platforms.
Among them are Sun, SGI, HP, Sequents, Pyramids, Crays, NeXTs, Apple Macintosh, and even
Xenix. Con�gurations for new operating systems has proven to be su�ciently general to necessitate
the inclusion of only eight example tw.config �les.

In the past year, the authors have collected feedback from numerous active sites reporting
the e�ectiveness of Tripwire in detecting changed �les on their systems. Several cases have been

17

reported to us of Tripwire �nding unauthorized intruders. Other cases have been reported to us of
system administrators making unannounced �le system updates or con�guration changes. At least
one case of a bad disk being discovered by Tripwire has also been reported to us. All these classes
of stories seem to validate our concept of this integrity checking tool. The last two classes of use
have proven to be surprising applications of Tripwire that we did not envision at the time we wrote
it!

According to system administrators, the ability to update Tripwire databases is among its most
important features. Files seem to change for many unforeseen reasons. Consequently, the database
is updated regularly. The addition of the interactive update facility in Tripwire was among the
most enthusiastically received features.

System administrators who are concerned about their security seem to appreciate the informa-
tion provided by Tripwire. They further appreciate the lack of privilege necessary to run Tripwire,
and its passive, report-only mode of operation. To ensure its security and inviolability, \secure NFS
servers" are the most commonly used con�gurations for running Tripwire. However, some sites'
distrust of NFS has motivated the addition of a \Tripwire server" which provides network services
for fetching databases and con�guration �les.

Many users have found the Tripwire sources to be legible and malleable. Eleven user-contributed
scripts are included with the Tripwire distribution, and we know of several sites where the users
have extensively modi�ed Tripwire to �t local needs. Maintenance of Tripwire has proven similarly
easy; adding the SHA signature routine to the distribution was accomplished in less than one hour.
The early bug reports often had �le and line numbers of the faults. This surprising fact lends
support that the approximately 13,000 lines of C code is relatively easy to understand.

7 Conclusions

Tripwire has proven to be a highly portable tool that system administrators can build using available
tools. It is completely self-contained, and once built, requires no other tools for execution. Tripwire
is publically available, is widely distributed, and widely used.

Tripwire has been used by system administrators in large and small sites: we have documented
Tripwire's active use at single machine sites, as well as sites having several hundreds of machines.
We have yet to hear a report of a site where Tripwire was installed and then removed because it did
not function according to expectation, or because it was too di�cult to build or maintain. Coupled
with the many positive comments we have received, and the fact that Tripwire has already caught
several intruders, leads us to conclude that our analysis and design are successful. We hope this
e�ort serves as a model for others who consider building security tools with similar goals.

18

8 Availability

The beta version of Tripwire was made publically available and posted to comp.sources.UNIX

on November 2, 1992 after three months of extensive testing. Over three hundred users around
the world critiqued the four preliminary releases during Summer 1992, guiding the development
towards a shippable, publically available tool. The formal release of Tripwire occurred in December
of 1993.

Tripwire source is available at no cost.8 It has appeared in comp.sources.unix (volume 26)
on Usenet, and is available via anonymous FTP from many sites, including ftp.cs.purdue.edu

in pub/spaf/COAST/Tripwire. Those without Internet access can obtain information on obtaining
sources and patches via email by mailing to tripwire-request@cs.purdue.edu with the single
word \help" in the message body.

9 Acknowledgements

The authors extend thanks to Rich Salz, Ken McDonnell, John Rouillard, Drew Gonczi, and the
many other beta-testers of Tripwire, who contributed greatly to its current direction.

Portions of this project were supported by COAST. Our thanks to supporters of the COAST
Project, and especially to Bell Northern Research.

References

[1] Maurice J. Bach. The Design of the UNIX Operating System. Prentice-Hall, Englewood
Cli�s, NJ, 1986.

[2] Vesselin Bontchev. Possible virus attacks against integrity programs and how to prevent
them. Technical report, Virus Test Center, University of Hamburg, 1993.

[3] J. Compbell. C Programmer's Guide to Serial Communications. Howard W. Sams & Co.,
1987.

[4] David A. Curry. UNIX System Security: A Guide for Users and System Administrators.
Addison-Wesley, Reading, MA, 1992.

[5] Edward DeHart, editor. Proceedings of the Security IV Conference, Berkeley, CA, 1993.
USENIX Association.

[6] Data encryption standard. National Bureau of Standards FIPS, 1977.

8It is not \free" software, however. Tripwire and some of the signature routines bear copyright notices allowing

free use for non-commercial purposes.

19

[7] Paul Fahn. Answers to frequently asked questions about today's cryptography. Technical
Report Version 1.0 draft 1e, RSA Laboratories, 1992.

[8] Daniel Farmer and Eugene H. Spa�ord. The COPS security checker system. In Proceedings

of the Summer Conference, pages 165{190, Berkely, CA, 1990. Usenix Association.

[9] Simson Gar�nkel and Gene Spa�ord. Practical Unix Security. O'Reilly & Associates, Inc.,
Sebastopol, CA, 1991.

[10] Chuck Gilmore. README �le for PROVECRC.EXE. README �le with program, 1991.

[11] Brian W. Kernighan and Dennis M. Ritchie. The M4 Macro Processor. AT&T Bell
Laboratories, 1977.

[12] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cli�s, NJ, 1978.

[13] Scott Leadly, Kenneth Rich, and Mark Sirota. Hobgoblin: A File and Directory Auditor.
University Computing Center, University of Rochester, 1991.

[14] Ralph C. Merkle. A fast software one-way hash function. Journal of Cryptology, 3(1):43{58,
1990.

[15] W. T. Polk and L. E. Bassham. A guide to the selection of anti-virus tools and techniques.
National Institute of Standards and Technology report, December 1992.

[16] Yisrael Radai. Checksumming techniques for anti-viral proposed. In Edward Wilding, editor,
Virus Bulletin Conference Proceedings. Virus Bulletin, Ltd., September 1991.

[17] Robert B. Reinhardt. An architectural overview of UNIX network security. Technical report,
ARINC Research Corportation, February 1993.

[18] R. L. Rivest. The md4 message digest algorithm. Advances in Cryptology | Crypto '90,
pages 303{311, 1991.

[19] R. L. Rivest. RFC 1321: The md5 message-digest algorithm. Technical report, Internet
Activities Board, April 1992.

[20] David R. Sa�ord, Douglas Lee Schales, and David K. Hess. The TAMU security package: An
ongoing response to internet intruders in an academic environment. In DeHart [5], pages
91{118.

[21] Gustavus J. Simmons. Contemporary Cryptology: The Science of Information Integrity.
IEEE Press, 1992.

[22] Cli� Stoll. The Cuckoo's Egg. Simon & Schuster, Inc., New York, 1990.

[23] Sun Microsystems, Inc. System and Network Administration, 1990. Part number 800-3805-10.

20

[24] Steve Talbott. Managing Projects with make. O'Reilly & Associates, Inc., 1991.

[25] David Vincenzetti and Massimo Cotrozzi. ATP anti tampering program. In DeHart [5],
pages 79{90.

21

