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Abstract

Users often �nd that local resources are too limited to solve large computing

problems. At the same time, unused machines remain inaccessible because

of incompatible architectures, ignorance of their capabilities, or incompatible

administrative restrictions. To preserve this investment in equipment, yet allow

for the solution of large problems, mechanisms are needed to join these systems

into cooperating groups across the boundaries of administrative domains and

physical locality.

In this paper, we describe messiahs, a system intended to provide scal-

able mechanisms for the e�cient implementation of scheduling policies on dis-

tributed systems, while preserving the autonomy of the component systems.

These systems can range from a few workstations to hundreds of heterogeneous,

autonomous systems interconnected via networks ranging from local-area net-

works to geographically large networks, connected by arbitrary links.

�This work was supported by a NASA Graduate Student Researchers Fellowship, NASA grant

number NGT 50919.
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1 Introduction

In a typical research environment, there is a large investment in computing equipment,
typically dozens or hundreds of workstations. Studies have shown that this equipment
is usually underutilized (see Gantz, et al. [18] and Litzkow [26]). Users of this
equipment often �nd that their local resources are not su�cient to execute large
programs, while the combined resources of several machines might solve the problem
at hand.

A solution to this problem is to conglomerate the separate processors into a dis-
tributed system, and then to join the distributed systems into larger systems to further
expand the computational power of the whole. Until now, obstacles such as incompat-
ible architectures and restrictive administrative domains have blocked the formation
of large-scale distributed systems that are composed of heterogeneous, autonomous
systems.

The messiahs1;2 project is investigating mechanisms to connect and support task
placement in autonomous, heterogeneous, distributed systems. These mechanisms
might be used by a scientist who wishes her job to be run on a large system, but
is unconcerned whether the computer is located in the same building or across the
country. The job may have subtasks best suited for a large vector processor or a
tightly-couple parallel machine, and the output might be rendered on a graphics
workstation.

In a conventional situation, the scientist would have to discover which processors
are currently available, and then reserve them for computation. This process is ine�-
cient, and decreases the realized throughput on these machines. Using messiahs, she
would submit her individual tasks to the scheduling system running on her worksta-
tion, and messiahs would automatically locate suitable execution sites and schedule
the tasks for execution.

An important distinction must be drawn between the scheduling support mecha-
nisms and the scheduling policies and associated algorithms built upon these mecha-
nisms. The algorithms that implement the policies are responsible for deciding where
a task should be run, while the mechanisms are responsible for gathering the infor-
mation required by the algorithms and for carrying out the policy decisions. The
mechanisms provide capability; the policies de�ne how that capability is to be used.

The remaining sections of this paper de�ne terms (x2), describe the elements
necessary to solve the problem (x3), the principles guiding the development of our
scheduling mechanisms and the complications inherent in scheduling for autonomous
systems (x4), our proposed approach to solving the problem of supporting distributed
scheduling (x5), an abstract implementation based on events (x6), a formal model for
information updates (x7), and our concluding remarks (x8).

1
Mechanisms E�ecting Scheduling Support In Autonomous, Heterogeneous Systems.

2mes.si.ah n: a professed or accepted leader in some hope or cause.
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2 De�nitions and Motivation

Before we can discuss our solution in detail, we must �rst de�ne the terms we will
use to describe the problem.

Autonomous systems consist of one or more subsystems connected by a commu-
nication medium; at the lowest level, a processor is an autonomous system with no
subsystems. A key feature of autonomous systems is that all information, behavior,
and policy pertaining to a system is private to that system. Any sharing of private
information is at the discretion of the local system.

Because of the prevailing decentralization of computing resources, distributed
computation systems must support autonomy. There is usually no longer a single,
authoritative controlling entity for the computers in a large organization. A scientist
may control a few machines of his own, and his department may have administrative
control over several such sets of machines. That department may be part of a regional
site, which is, in turn, part of a nationwide organization. No single entity, from the
scientist to the large organization, has complete control over all the computers it may
wish to use.

Heterogeneous systems are multiprocessor systems that may have processors of
di�erent types. They may have di�erent architectures, computation speeds, operating
systems, and devices. In contrast, homogeneous systems have the same architecture
and operating system, although they may vary in performance.

Heterogeneity is important because it yields the most cost-e�ective and e�cient
method for performing some computations. For example, a large computation might
have pieces best suited for execution on a vector-processing supercomputer, while
other parts might run best on a massively parallel machine or a graphics workstation.
If the program is restricted to using only one architecture within the distributed
system, it will su�er needless delay.

Distributed systems communicate by passing messages over an external communi-
cations channel. Such systems are often called multicomputers (as de�ned by Spa�ord
in [41]) or loosely-coupled systems, as opposed to tightly-coupled parallel machines
that communicate through shared memory.

There are many examples of systems that share some of these qualities. Shared-
memory parallel processors such as the Sequent Symmetry [38] are homogeneous,
tightly-coupled systems. Homogeneous groups of workstations that communicate over
a network are described by Babin [2], Gantz, et al. [18], and Litzkow [26], among
others. Stumm describes a heterogeneous, distributed system of workstations in [43].
None of these systems support autonomy.

Our de�nition of a task is a request for resources. This includes the conventional
model of a computationally intensive unit in a larger program, as well as a set of
database queries (see Carey, et al. [7]), output requests, etc. Thus, our mechanisms
could be used in the scheduling of queries to a large distributed database, to manage
a set of output devices, such as printers, or to allocate network resources for large
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data transfers. For simplicity of description, we will restrict our discussions to the
conventional model of placing computational tasks on processors.

Within a distributed system, there are two levels of task scheduling: the associa-
tion of tasks with processors, also called task placement, and the choice of which task
to execute among those available on a processor. Our work concentrates on facilities
for the former.

Many researchers have studied the problem of task placement in distributed sys-
tems, including Sarkar [37], Lo [28], Stone [42], and Blake [4]; however, their algo-
rithms have assumed that all processors are similar, that perfect information describ-
ing the system and tasks is instantaneously available, or that they have total control
of all processors in the system. We have found no evidence in the literature that our
more general case, with heterogeneous and autonomous systems, has been studied.
We have likewise found no reports describing the mechanisms necessary to implement
algorithms for such systems.

The scheduling support mechanisms we are developing will support systems that
are autonomous, heterogeneous, and distributed. Unless noted otherwise, all uses of
the terms autonomous system and system in this paper refer to autonomous, hetero-
geneous systems. An administrator is an entity, either a human or a software module,
that decides the policy for a system. A user submits tasks to a system for processing.

3 Requirements

To build a hierarchical, heterogeneous distributed system, we require several hardware
and software components. Most obviously, we require an interconnection network for
the processors, and that each processor be able to send and receive messages on the
network.

If the processors are to exchange tasks, there must be a mechanism to move
programs, and autonomy demands an associated mechanism to revoke or migrate a
running task. For example, a computation might start on an unused workstation
at night. If the local scheduling policy determines that the job should no longer be
run, the acceptance of the program must be revoked, and the job would have to be
migrated or restarted within the system. This might occur if the user returned to his
workstation in the morning, or if the load average rose above a threshold. Without a
revocation facility, autonomy is not possible, and the available processing power may
be decreased as users refuse to allow their machines to run jobs from the distributed
system, rather than sacri�ce their sovereignty. Note that checkpoints would normally
be employed in such a situation to prevent the loss of partial results.

Message passing protocols, both reliable and unreliable, are necessary to exchange
system description and task description information. The content of these messages
must be represented in an architecture-independent format. The information in the
descriptions must be descriptive enough to be used by existing scheduling algorithms,
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and the mechanism for expressing it must be extensible to accommodate new algo-
rithms.

To be practical, the system must provide a mechanism for the administrator to
express a scheduling policy. It must also allow the administrator to control the 
ow
of information out of the system to support autonomy and security.

3.1 Prior work

Several of these problems have been investigated by other researchers. The FTP pro-
tocol family (see [35, 40, 29, 11]) provides mechanisms to move �les and programs.
E�cient implementations of revocation might use checkpointing and process migra-
tion mechanisms, such as those as in Emerald [24], Amoeba [30], Sprite [31], Dune
[36], Charlotte [1], or the V System [44]. These mechanisms can also be used in
developing fault tolerance and load balancing schemes.

Essick [15], and Shub, et al. [13, 39]) have devised architecture-independent task
representations. XDR [23] and ASN.1 [16, 17] specify machine-independent data
formats. The User Datagram Protocol [34] and Reliable Datagram Protocol [45, 32]
protocols from the DARPA TCP/IP protocol suite are message-based protocols, and
could form the basis for our information exchange prototols.

3.2 New research

The remaining components constitute our research. We have designed protocols to
exchange information vectors describing the resources available in a system and de-
scribing the tasks that are candidates for execution. The information contained in the
descriptions consists of a �xed portion and a general-purpose extension mechanism
to facilitate the implementation of new scheduling algorithms.

We have designed and constructed software modules to interpret a description of
a scheduling policy and enforce that policy in decision making. A similar interpretive
mechanism mediates the combination of multiple system descriptions into one, for
further propagation.

The autonomy, distribution, and heterogeneity constraints complicated the design
and construction of each of these components. The di�culties posed by these factors
are discussed in depth in section 4.

3.3 Assumptions

In addition to supplying the required components, we make several assumptions about
machines that participate in our autonomous system:

� Anymachine that submits tasks to the system reciprocates by accepting schedul-
ing requests, but not necessarily honoring them. This promotes \fair play," and
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that a greedy user could not take advantage of others' generosity while hoarding
his own machine's capabilities for himself.

� The makeup of the system is dynamic; machines are free to leave or join the
system at any time. Machines may crash, or they may become unavailable for
task scheduling because of policy considerations.

� Communication between systems is not reliable. Networks often experience
brief periods of arbitrary delay and data loss.

� A subsystem may report to more than one parent system. In an environment
where di�erent researchers from di�erent administrative domains pool their
funds to purchase a large machine, both domains may wish to schedule tasks
upon the machine.

4 Guidelines and Constraints

We have �ve guiding principles for our scheduling mechanisms:

1. Strive for generality. Because we cannot foresee all requirements of scheduling
algorithms, the mechanism must be extensible. In particular, the representa-
tions of systems and tasks must adapt to the requirements of users.

2. Preserve local autonomy. There should be no forfeiture of local control. The
mechanisms must support the autonomy of the policy for each system; only
those data the local policy wishes to advertise should be advertised. Each ma-
chine within the system is free to have a local scheduling policy that does not
conform to a global policy, and the mechanisms must support this. Con�gura-
bility is important to maintain autonomy. Parameters that control the system's
behavior should be tunable, when possible.

3. Facilitate scalability. The architecture should function on systems ranging from
a single workstation to hundreds or even thousands of processors, with inter-
connection schemes ranging from local area networks to wide area networks.
Centralization of information must be avoided to achieve this ability to scale.

4. Minimize overhead. The monitoring overhead and message tra�c must be kept
low so as to not adversely impact performance within the system, i.e. the
scheduling mechanismmust minimize its interference with the running of appli-
cation programs. The scheduling module should also minimize use of memory
and disk resources.

5. Maintain data integrity. The mechanisms must support scheduling algorithms
by providing accurate information. An optimal support mechanism would have
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all the information required by an algorithm available at all times, and this
information would be perfectly accurate. We are concerned with the timeliness,
the completeness, and the accuracy of the data available to the algorithms.

As we examine the complications created by the interaction of these guidelines and
the three basic factors of heterogeneity, autonomy, and distribution, we will explain
how these principles in
uenced our decision making during the design process.

4.1 Con
icts between guidelines

Note that although these guidelines can be adhered to individually, they have mutu-
ally exclusive tenets when taken collectively. We now examine the con
icts that arise
when two or more of the principles are observed simultaneously. Solutions to these
compromises are detailed in sections 5 and 6.

Overhead and data integrity

Task placement algorithms require descriptions of the tasks to be scheduled as well
as of the distributed system. The quality of the mapping of tasks to processors can
depend upon the accuracy of the information available to the algorithm. The more
timely and accurate the description information is, the better.

The description of the distributed system is highly dynamic. Because the system
is made up of many separate computers, there is a large amount of information to
be gathered. Typical system description information includes processor speed and
utilization, available memory, and communications delay between systems. Because
of factors such as processor and network load, and the freedom of machines to join
and leave the system at will, this information can change rapidly.

If the scheduling algorithms are to have accurate information describing this dy-
namic system, the mechanisms that gather this information must allow for frequent
updates. This is at loggerheads with the principle of minimal overhead.

Spatial overhead can be as important as processor or network overhead. Data
representations with higher precision can require additional storage, and thus increase
overhead.

Scalability and data integrity

Scalability precludes the centralization of information. If the system is to be accu-
rately represented, then complete information must still reach all nodes. The decen-
tralization of data storage introduces latency which degrades the timeliness of the
data.
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Generality and overhead

To support generality, the system must have an extension mechanism that allows the
system and task representations to be augmented. Use of these extensions increases
the overhead for processing a description.

Overhead and scalability

The replicated, distributed data storage required by the scalability guideline consumes
more storage space than its centralized counterpart.

4.2 Autonomy considerations

Webster's Dictionary de�nes autonomous as \having the power of self-government",
or as \responding, reacting, or developing independently of the whole." Thus, an
autonomous system makes local policy decisions and can act without the permission
of any central authority.

In prior work, Garcia-Molina and Kogan [19], and Eliassen and Veijalainen [14]
examined autonomy in distributed systems and devised taxonomies for its di�erent
types. The Eliassen and Veijalainen scheme is more general than Garcia-Molina, but is
not as detailed. We combined the two schemes and tailored the category descriptions
to our application of distributed scheduling.

We de�ne four classes of autonomy:

design autonomy (D-autonomy) The designers of individual systems are not bound
by other architectures, but can design their hardware and software to their own
speci�cations and needs. This gives rise to heterogeneity, as machines can have
distinct instruction sets, byte orderings, processor speeds, operating systems,
etc.

communication autonomy (C-autonomy) Separate systems can make indepen-
dent decisions about what information to release, what messages they send,
and when they send them. Thus, a system is not required to advertise all of its
available facilities, nor is it required to respond to messages received from other
systems. A node is free to request scheduling for a task, regardless of whether
that task could or could not be run locally.

execution autonomy (E-autonomy) Each system decides whether it will honor a
request to execute a task, and has the right to revoke a task it had previously
accepted. The local policy decides what resources are to be shared.

administrative autonomy (A-autonomy) Each system can set its own usage poli-
cies, independent of others. In particular, a local system can run in a manner
counterproductive to a global scheduling algorithm. All policy-tuning parame-
ters are set by the local administrator. Also, because membership in the system
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is dynamic, a system can attempt to join any other system; conversely, the mod-
ule managing the administrative aspects of a system can refuse any such attempt
to join.

Because of E-autonomy and C-autonomy, all decisions pertaining to a system are
under its control. It advertises as little or as much of its system state as its local
policy decrees, and cannot be forced to accept tasks for execution. Because of this,
we cannot be sure that we have complete information describing a system; we only
know what it chooses to tell us about itself. This can compromise data accuracy if a
pertinent statistic is not advertised.

The E-autonomy constraint requires our system to be able to suspend a task and
remove it from a processor if the local scheduling policy determines that it should no
longer be run.

The combination of E-autonomy and heterogeneity poses another problem for
migration. We must move a process from one machine to another, but because of
C-autonomy, we may not know the architecture of the recipient machine. Therefore,
advance translation of the program image might be impossible. Essick [15] and Shub,
et al. [13, 39] have examined the problem of compiling programs for multiple ar-
chitectures, but their solutions are of limited applicability to the problem. An ideal
solution would be an analog of xdr for programs. For the moment, processors with
di�erent instruction sets cannot directly share code, and process migration between
heterogeneous systems is not supported.

A-autonomy means that we cannot rely on neighboring systems to behave in any
speci�c manner. When combined with C-autonomy, it means that expected inter-
message times may be quite di�erent between neighbors. Combining A-autonomy and
E-autonomy means that the local scheduling policy might act to defeat the concerted
e�orts of a group of cooperating remote modules.

A small amount of C-autonomy is lost when the system conforms to the generality
guidelines, because the format of its transmitted data is de�ned externally.

4.3 Distribution considerations

The distributed and autonomous nature of the system preclude global sharing of
information. Lamport, in [25], showed that information in a distributed system will
always be out of date. Thus, there will always be some latency involved in the
information reporting. We cannot know what the system looks like instantaneously;
we must content ourselves with an estimate of what it looked like at some point in
the past. There is an obvious tradeo� between freshness of data and minimization
of resources spent maintaining the data. messiahs provides facilities to tune its
behavior, giving the administrator freedom to set the balance.

A side e�ect of scalability and distribution is that we cannot keep complete in-
formation on every processor in the system. The bookkeeping requirements would
quickly consume the processing power of the system, and little or no productive work
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Figure 1: A Sample Autonomous System Architecture

would be accomplished. Again, we have a tradeo� between the accuracy of a system
description and its size. We have designed a mechanism to combine and compress
multiple system descriptions into one, thus saving space while preserving much of the
descriptive information.

4.4 Heterogeneity considerations

Heterogeneity is a special case of D-autonomy, but is signi�cant enough to deserve
special mention. Because the individual processors within the system can have dif-
ferent architectures (di�erent data representations, machine instructions, execution
speed, etc.), values passed between machines must use a standard external data rep-
resentation, such as xdr [23]. A program compiled for one architecture cannot be
directly executed on a machine of a di�erent architecture.

5 The Architectural Model

We intend to build our autonomous systems in a hierarchical fashion, which is a
model often used in the real world. An autonomous system is composed of a set
of subordinate autonomous systems. Within each of these sets there can be many
machines, which could be further grouped into autonomous systems. At the lowest
level, each machine is the sole member of an autonomous system. For example, the
set of computers at Purdue University is an autonomous system. Within the Purdue
hierarchy, there are many subordinate autonomous systems, including those used by
the School of Engineering (ecn), the Department of Computer Sciences (cs), and the
Computing Center (pucc). The computer science machines decompose into several
groups: the general-use department machines, the Software Engineering Research
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Center, the Xinu/Cypress project, and the Renaissance project, among others. This
is pictorially represented in �gure 1.

Networks are not autonomous systems; sets of machines are. Autonomous systems
are logical, administrative groupings; they may or may not correspond to physical
groupings of machines. The interconnection network for a set of machinesmay suggest
an e�cient grouping of autonomous systems. bredbeddle and blays are machines on
the same local-area network, and owned by the same researcher, so it is natural to
place them within the same autonomous system. The nyneve node is an example of a
machine under administrative control of two research projects, the Xinu project and
the Renaissance project, and therefore belongs to two autonomous systems.

We represent our systems with acyclic, directed graphs, with encapsulating au-
tonomous systems as interior nodes and machines as leaf nodes. Each node is the root
of an autonomous system, and is virtual. In some cases, the virtual nodes map di-
rectly onto machines, and in other cases they do not; e.g. there is a machine leonardo
at Purdue, but there is not necessarily any machine named CS or Renaissance. A ma-
chine within an autonomous system is selected to act as its representative to higher
levels within the graph. So, blays might act as the XINU/Cypress spokesman within
the CS system.

We have de�ned autonomous systems as hierarchical constructs, where an au-
tonomous system is made up of one or more subordinate systems. We call an encap-
sulating autonomous system a parent, and a subordinate system a child. Thus, in
our example, CS is the parent of SERC, Renaissance, etc., and they are its children.
As is demonstrated by nyneve, a child may have multiple parents. Children with the
same parent are called siblings. The term neighbor refers to one of a node's parents,
children, and siblings.

In messiahs, each autonomous system in the hierarchy has a scheduling support
module that is responsible for maintaining the set of information required by the
scheduling policy and for moving tasks between systems.3 It provides the mechanism
upon which the scheduling policy is built. There are two facets to the local policy
that our modules support: task placement and task acceptance. Task placement
algorithms take a set of tasks and a description of the underlying multicomputer
and devise an assignment of tasks to processors according to an optimizing criterion.
Because our systems are autonomous, each has a local policy to determine if a task
assignment will be accepted.

Our method for implementing the module has three main parts: the system de-
scription vector (SDV), the task description vector (TDV), and the protocol used to
communicate between systems.

3We will often use the notation \X" as a shorthand for \the scheduling module for autonomous

system X."
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5.1 The system description vector

The system description vector encapsulates the state of a system and is used to
advertise its abilities to other systems that may request it to schedule tasks. The
vector is the information base a scheduling module uses to choose a candidate system
for a task from among its neighboring systems.

The system description vector is designed to support the scheduling of conven-
tional tasks. The 
exibility of our mechanism allows us to tailor the vector to other
applications.

To determine what information should be passed in the vector, we surveyed the
existing research and noted the classes of information used for scheduling algorithms
(including Sarkar [37], Lo [27, 28], Stone [42], Drexl [12], and Hochbaum and Shmoys
[22]). Surprisingly, very few of the current scheduling algorithms use any information
beyond processor speed. Of the surveyed papers, 50% used the processor speed as
input to their algorithms, while only 7% considered the communications structure of
the system. The relationship between the SDV and TDV are shown in table 1.

SDV TDV Use by Policy Module

available memory memory requirements compare capacity
processor speed estimate if task will
processor load complete in acceptable time

estimated time
communications costs communications load compare capacity
willingness used to decide which neighbor

to request scheduling from
originating system bookkeeping and policy decisions

Table 1: Comparison of TDV to SDV

This is a classic \chicken and the egg" problem: which comes �rst, the demand
for speci�c system information by complicated algorithms, or the information that
makes such algorithms feasible? We posited that if such information were readily
available, more algorithm designers would use it, and we augmented the set with
items we expect will be desired in the future. Factors in the resulting set include:

� memory statistics (available and total)

� processor load (queue length, average wait time, and processor utilization �)

� system characteristics (processor speeds, the number of processors, etc.)

� communication costs (point-to-point, start up, read/write)

12



� a measure of the system's willingness to take on new tasks

Each scheduling support module within the system has the ability to cache infor-
mation to build a history of behavior for subordinate systems. This history mechanism
is user-con�gurable, and information on the history characteristics of each datum (e.g.
permanence, mean, standard deviation, etc.) is passed with the datum.

Our design de�nes a static set of machine classes for each characteristic. The
classes are based on a logarithmic scale. We chose the logarithmic scale because of its
applicability to real-world processors. This embodies the balance between scalability
and minimization of overhead: we prede�ne a �xed set of machine classes, yielding
e�cient processing, while condensing the information to achieve data compaction and
the ability to expand to large systems.

If a system provides special services, such as specialized I/O devices, vector pro-
cessors, etc., it can use the extension mechanism described in section 5.4.

5.2 The task description vector

The task description vector is analogous to the system description vector; it represents
the resource requirements of a task. The task vector is used by the task acceptance
facet of the scheduling policy in conjunction with system description. The task ac-
ceptance function can be thought of as a task �lter that compares the two vectors,
subject to the local policy, and decides if a task should be accepted.

The surveyed scheduling algorithms demand speci�c information about tasks, in
contrast to their simplistic demands for system description information. 64% of the
algorithms computed results based on the estimated run-time of a task, and 57% used
inter-task communication estimates. Our task description vector consists of:

� memory requirements

� estimated run time

� originating system

� estimated communications load

Tasks that require special services will describe them using the same extension
mechanism used for the system description vectors.

5.3 The protocols

The communications protocols de�ne the interaction between scheduling modules
within the autonomous system. All information passing and inter-module coordina-
tion takes place through the protocols.
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Conceptually, the protocol has three channels: the control, update, and task chan-
nels. The update channel advertises system state. The task channel moves a task
between systems, and the control channel is used to pass control messages and out of
band data.

5.3.1 The update channel

The update protocol is message-based. Each message contains the system description
vector for the sending system, and consists of a message header and a �xed set of
data, followed by an optional set of application-de�ned data. The interpretation of the
application-de�ned data is done by the two modules at opposite ends of the channel.
The update channel is unidirectional; the recipient of an update message returns no
information through the update channel. The update channel makes no attempt to
ensure reliability. If a reliable message passing mechanism exists, it may be used.
As noted by Boggs, et al. in [5], networks are generally reliable under normal use.
Timely delivery of data is more important than reliable delivery; late information is
likely to be out-of-date, and therefore of little value.

At periodic intervals a module recomputes its status vector and advertise the up-
dated vector through the update channel. The length of the period is a locally tunable
parameter (recall the discussion in section 4.1 on the tradeo� between overhead and
data integrity. A short timeout period ensures that update recipients have an accu-
rate view of the sender, but incurs a penalty in terms of machine load. A long timeout
is computationally cheap, but risks the development of inaccurate schedules based on
outdated information. When the countdown timer for the period expires, the schedul-
ing support module recomputes the state representation for its autonomous system,
and advertises it. This is done regardless of how recently it received updates from
other systems. We will investigate the use of a multicast facility for this channel,
such as described by Birman, et al. in the isis system manual [3], and by Deering in
[10]. Provision is also made for polled updates, whereby a system can query another
as to its status through the control channel and receive a reply through the update
channel.

Update cycles cannot be allowed in the communications structure of a system.
An update cycle occurs when two or more systems exchange update messages and
compute their status vectors based on those messages. Such behavior causes an
ever-increasing overestimation of system resources, analogous to the count to in�nity
problem in network routing protocols (see Comer [9]). For any system, there are three
sets of systems that could pass it updates: its children, its parents, and its siblings
within the hierarchy. In order to avoid update cycles, we do not allow parents to pass
update messages to their children. Also, we tag the updates passing from child to
parent; these are the only updates used in the computation of the system description
vector. Updates from siblings are passed to the task placement module, but are not
incorporated into the system vector.
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5.3.2 The control channel

The control channel is intended to be a bidirectional, reliable, message-based channel,
such as described by Hinden, et al., in the Reliable Datagram Protocol description
[32, 45]. A control message consists of a header, including an ID number for the
message and a message type, and data that depends on the type of the message.
The de�ned control message types are sched request, sched accept, sched deny,
task request, task accept, task status query, task status, task kill, and sys-

tem status query.

sched request

The sending system requests another system to accept a task for execution.
This request includes a copy of the task description vector for the referenced
task.

sched accept

The recipient of a sched request accepts the request by replying to the re-
quester with this message. The data for this message includes the identi�cation
number of the accepted sched request message.

sched deny

The recipient of a sched request message passes its refusal to accept the re-
quest to the requester. The data includes the identi�cation number of the
rejected sched request message.

task request

The system requests a task from another system. This request includes a copy
of a task description vector describing tasks the requester will accept. Receiver-
initiated load balancing schemes could use this type of message.

task accept

The system accepts the task request. The data for this message includes the
identi�cation number of the accepted task requestmessage. The task is moved
through the task channel.

task deny

The requested system will not migrate a task to the requester; either it is
unwilling, or it has no matching tasks. The data includes the identi�cation
number of the rejected task request message.

task status query

The sender submitted a job for execution, and is requesting information on the
status of the task. The task request and job identi�er of the task are included
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in the message. This message is useful to test for abnormal conditions such as
a link failure in the network, or a system crash.

task status

The sender is responding to a task status query message, or notifying the
receiver of the completion of a job. This message can report one of six possible
states: executing, �nished, aborted, killed, revoked, and denied.

An executing status indicates that the task is still eligible for execution, although
it may be blocked. The �nished state is sent upon completion of a task, while
aborted indicates that an error has occured, e.g. a bus error or division by zero.
The �nished state does not guarantee the correct functionality of the task, only
that it did not crash.

The killed status indicates that the task was killed on request from the origi-
nating system. If the administrator or local policy revokes a task, the revoked
message is sent. A denied reply means that the requested system would not
accept the task for execution.

task kill

The sender requests that the receiver stop executing the task named in the mes-
sage. If the receiver chooses to do so, it should return a task status message.

system status query

Query the state of a system. A system description vector will be returned
through the update channel in response to this request.

5.3.3 The task channel

The task channel reliably transfers a task between two nodes in an autonomous sys-
tem. Once a task's destination has been negotiated using the control channel, a task
channel is opened to move the task. This may either be directly between the source
and destination, or by a special form of delivery called proxy transfer. Proxy transfer
is used when the destination is inside an autonomous system that prohibits an out-
side system from directly accessing its members. In this case, the task is delivered to
the encapsulating autonomous system, which is then responsible for forwarding the
task to its destination. Gar�nkel and Spa�ord [20] de�ne this type of behavior as a
�rewall. Cheswick discusses the the construction of a secure packet router embodying
the �rewall concept in [8].

5.4 The extension mechanism

It would be impossible to prede�ne the complete set of characteristics used by all
present and future scheduling algorithms. Therefore, messiahs includes an extension

16



mechanism that allows users to customize the description of a system or task. Users
may append a set of (variable, value) pairs to the description vector, and may
specify a predicate in terms of basic functions and these variables. The scheduling
module evaluates the predicate, and makes a decision based on its boolean-valued
result.

Our extension mechanism is similar in concept to the attribute-based descriptions
of the Pro�le [33] and Univers [6] systems developed at the University of Arizona.
We have simpli�ed and tailored the concept to our more limited purposes.

The messiahs extension mechanism has two basic variable types: strings and in-
tegers. The extension language includes parentheses for grouping, the comparators <
> = <= >= <> for integers and eq gr ls le ge ne for strings, and the logical opera-
tors and or not xor. Within the predicate, variable names begin with the character
$. For example, if the user de�ned a value of (cpu, sparc) for a system, then a pred-
icate might be ($avail mem >= 4000000) and ($cpu eq "sparc").4 This syntax
is similar to that used in the perl language [46].

The mechanism is the same for extending both task and system description vec-
tors, but the interpretation of the �elds is di�erent. The �elds describe the require-
ments of a task or the capabilities of a system. In the case of a sched request

message, the module evaluates its local predicate with values from the received task
description; for a task requestmessage, it evaluates the received predicate with val-
ues from the description vectors for the available tasks. One can think of this process
as acting as a task �lter.

In concrete terms, the task �lter takes as input a description vector and a pred-
icate. The �lter parses the description, and wherever it �nds a variable name (e.g.
$cpu), it �lls in the value from the description vector. When all variables have been
replaced with their values, the �lter evaluates the predicate.

A resulting value of true indicates that the vector matches the predicate, and
false indicates failure. The use of an uninitialized �eld automatically causes the
predicate to return false. In the case of a sched request, a true value means that
the system can accept the job for execution. Similarly, the task �lter returns a value
of true for a task request if a migratable task matches the predicate.

6 Event-based semantics

The semantics of a scheduling module are de�ned in terms of events and consequent
actions. Events in messiahs are either timeout events or message events. Timeout
events occur when a timer expires, and message events indicate the receipt of a
message through the communications channel.

4Recall that available memory is one of the �xed �elds in a description vector.
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6.1 Timeout events

Timeout events are one of two types, input and output. Input timeouts indicate
that we have not received an update from a neighboring system (either child, parent,
or sibling). Output timeouts indicate that it is time to advertise system state to
neighboring systems.

When an output timeout event occurs, the scheduling module must recompute
its update vectors and advertise them to the appropriate neighbors. Local policy
determines the length of the timeout period.

An input timeout event occurs when a module has not heard from a neighboring
module within a prescribed time period. Depending on local policy, the module will
either declare the neighboring system down, or it will query the system status of
the neighbor through the control channel. Because of the dynamic nature of system
membership, this is not an unexpected or erroneous condition.

There are provisions for operating the system in a poll-driven manner, so that
input and output timeout events are not generated.

6.2 Message events

Each message type corresponds to a message event. Thus, there are 10 message
events: sched request, sched accept, sched deny, task request, task accept,
task deny, task revoke, status query, join request, and status vector. The
following list details the actions of a scheduling module upon receipt of each type of
message. The status vector message is sent through the update channel; all others
pass through the control channel.

sched request

A scheduling request message contains a description of a task that the sender
would like the receiver to accept. The TDV is compared to the SDVs for the
module itself, its children, and its parents. If the module accepts the task for
itself, it replies with a sched accept message. If not, then it forwards the
sched request message to the most likely candidate5. If the local module is
using proxy accept, and the request is being sent to a child, then the module
must replace the source ID in the request with its own, and make note of the
change for later task forwarding.

sched accept

A sched accept event indicates that the task has been accepted for execution,
and is sent in response to a sched request. If the corresponding request has a
source ID of the local scheduling module, then either proxy accept is in force, or

5Our initial implementation prohibits a module from attempting to concurrently schedule a task

on multiple neighbors.
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the local module originated the request. In the former case, the module replaces
the source ID with the ID earlier, and forwards the acceptance. In the latter
case, the module opens a task channel to the acceptor and passes the task. If
the source ID is not that of the local module, the acceptance is forwarded.

sched deny

A sched deny message event indicates that the sender will not accept the task.
The receiving module will then send a sched request message to the next eli-
gible system, according to the local policy. If there are no more eligible systems,
the denial is forwarded back towards the original sender of the sched request

message.

task request

A task request message contains a description of a task that the sender is willing
to run. The TDV is compared to the TDVs of any tasks on the local system, ac-
cording to local policy (there may be certain tasks the local module is unwilling
to migrate). If the module has an eligible task, it replies with a task accept

message. If not, then it passes a task request message to the most likely
candidate among its neighbors. Just as with sched request messages, if the
local module is using proxy accept, and the request is being sent to a child, the
module must replace the original source ID with its own.

task accept

This event indicates that the sender has a task that matches the description
from the request message. The receiving module compares the source ID of
the requester to its own ID; if they match, and it the module is using proxy
accept, it replaces the acceptors id with its own and forwards the acceptance.
If the local module is the original requester, it opens a task channel to the
acceptor and receives the task. If the source IDs do not match, the acceptance
is forwarded.

task deny

The sender indicates that it has no tasks available matching the request. The
local module queries the next eligible system for a task; if none remain, it
forwards the denial.

task revoke

The recipient attempts to reschedule the task at another node, in accordance
with local policy. If there are no more eligible nodes, the revocation message is
forwarded. If no suitable system can be found to execute the revoked task, the
task is aborted.
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system status query

In response to a status query message event, the receiver returns the appro-
priate SDV through the update channel. Local policy may limit the information
sent.

task status query

The sender is asking if the task described in the message is still running. The
receiver, if it responds, sends a task status message.

task status

In response to a task status query message event, the receiver returns the
task's status through the update channel.

join request

If the local con�guration and policy allow, the local module will add the sender
as a child system.6

status vector If the sender is a child, sibling, or parent, the module saves the vector
for later use in scheduling, and resets all timers and counters associated with
the link.

7 A Formal Model for Update Vectors

Until now, we have assumed that a correct mechanism exists for combining update
vectors. In this section, we de�ne an operation for combining update vectors and
analyze the semantics of the operation.

In general, a distributed system is a multigraph, with processors represented as
nodes and communications links as edges. In this section, we examine the semantics
of combining update vectors distributed systems constructed as a forest of trees,
and prove that our update protocol does not overestimate system resources in such
systems.

7.1 De�nitions and notation

When discussing the system description vectors passed through the update channel,
we use a set notation. Members of the set are names of systems; the name of a system
represents its capabilities in the update vector. For example, the set fa; b; cg contains
a description vector that represents the capabilities of a, b, and c. The identifying
features of the individual machines, such as names and addresses, are not contained
in the update vector.

6Cycles should be avoided among autonomous systems. At present, it is the responsibility of the

administrator to ensure they do not occur.
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We de�ne the operator ] to be the set union operator, with duplicate inclusion.
Our sets can have duplicate items, which are known as bags or multisets (such as in
the programming language ABC [21]). For example,

fa; bg ] fa; cg = fa; a; b; cg

We use the ] operator to coalesce our representation of two SDVs into one. We
use multisets because there can be duplicate machines within an autonomous system.
This situation is commonplace in environments containing laboratories of public work-
stations. We will use the notation

U
i 2 range Si to map the ] operator over multiple

sets.
The operation A]B provides an upper bound on the information contained in the

SDV representing their combined capabilities. This is an upper bound because, as
per the autonomy constraint, a system may discard part of the incoming SDV before
forwarding it7.

In order to reason about the structure of the system graphs, we de�ne four predi-
cates de�ning the child, parent, ancestor, and descendant relation between two nodes.

parent(p; c) =

(
true there is an edge from p to c in the DAG
false otherwise

(1)

child(c; p) =

(
true there is an edge from p to c in the DAG
false otherwise

(2)

ancestor(a; d) =

8><
>:

true if parent(a; d) or
(9p 3 fparent(p; d) and ancestor(a; p)g)

false otherwise
(3)

descendant(d; a) =

8><
>:

true if child(d; a) or
(9c 3 fchild(c; a) and descendant(d; c)g

false otherwise
(4)

In addition, we denote the set of parents of a node x as Pax, its children as Chx,
its siblings as Six, its ancestors as Anx, and its descendants as Dex. Equations 5
through 9 give formal de�nitions for these sets in terms of the four predicates.

Pax = fp j parent(p; x)g (5)

Chx = fc j child(c; x)g (6)

7We assume that no system will be intentionally deceitful by in
ating the capabilities it receives

from subordinate systems
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Six = fsj (x 6= s) and (9p 3 parent(p; x) and parent(p; s))g (7)

Anx = fa j ancestor(a; x)g (8)

Dex = fd j descendant(d; x)g (9)

7.2 Computation of update vectors

Each node within our autonomous system will compute three sets of system status
data to be passed through the update channel. The three sets are intended for the
node's parents, children, and siblings, if any. We denote these sets, for a node x, as
Ux, Dx, and Sx respectively. These quantities are recursively de�ned in terms of the
structure of the system.

Ux = fxg ]

0
@ ]
8i 2 Chx

Ui

1
A (10)

Dx = fxg ]

0
@ ]
8j 2 Pax

Dj

1
A ]

0
@ ]
8k 2 Six

Sk

1
A (11)

Sx = Ux (12)

The update vector passed to parents and children is di�erent than the internal data
kept for decision making. At any moment, a node will have an internal representation
of the data from each child and parent. For two nodes x and y, we de�ne a view vector
Vxy, read as \x's view of y:"

Vxy =

8>>>>>><
>>>>>>:

Uy y 2 Chx
Dy y 2 Pax
Sy y 2 Six
fxg x = y

; otherwise

(13)

At any time, a node x will have kChxk + kPaxk + kSixk + 1 di�erent views to
compare with a submitted job.

Our examples are based on the autonomous system depicted in �gure 2. The solid
lines indicate parent/child links. The dashed lines also indicate parent/child links,
but under certain circumstances are treated as missing.
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Figure 2: A Sample Autonomous System Architecture

7.3 A modi�cation: the primary parent

Equations 10, 11, and 12 have a slight 
aw: if a node has two parents with a common
ancestor, the capabilities of the system will be overestimated. The d node in �gure 2
is an example of this.

We solve this problem by introducing the notion of a primary parent for each sys-
tem, and modifying the U , D, and S de�nitions. This has the e�ect of superimposing
a tree structure on the DAG. In our example, the solid lines represent the primary
parent/primary child link. The primary parent of a node is the only one who will
incorporate updates from the child; other parents will receive the update, but they
will not use it in the computation of their own update vectors. In conjunction with
these de�nitions, we de�ne a primary path as the path between two nodes using only
primary links. Note that between any two nodes, only one primary path can exist.

The notions of primary ancestor, primary descendant, and primary sibling are
analogous to the notions of ancestor, descendant, and sibling de�ned earlier. Given
those de�nitions, we de�ne the sets of primary parents, primary children, primary
siblings, primary ancestors, and primary descendants as follows:

PPx = fp j primary parent(p; x)g (14)

PCx = fc j primary child(c; x)g (15)

PSx = fsj (x 6= s) and (PPx \ PPs 6= ;)g (16)

PAx = fa j primary ancestor(a; x)g (17)
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PDx = fd j primary descendant(d; x)g (18)

Equations 19, 20, and 21 incorporate the primary parent into the de�nitions of
the U , D, and S vectors.

Ux = fxg ]

0
@ ]
8i 2 PCx

Ui

1
A (19)

Dx = fxg ]

0
@ ]
8j 2 PPx

Dj

1
A ]

0
@ ]
8k 2 PSx

Sk

1
A (20)

Sx = Ux (21)

All parents will use the U update to compute their V sets for the child (see
equation 13). If a node has only one parent, it is automatically the primary parent.
Conversely, a child will only incorporate the D update from its primary parent into
its D vector; it will still use the D sets from its other parents to compute the V sets.
Siblings that share a primary parent will incorporate updates.

Vxy =

8>>>>>><
>>>>>>:

Uy y 2 PCx

Dy y 2 PPx

fxg x = y

Sy y 2 PSx

; otherwise

(22)

7.4 Proofs of semantics

In this section, we will prove that the semantics we have de�ned are correct. Cor-
rect semantics ensure that an autonomous system is represented at most once in
any update vector. Semantics meeting this constraint will not overestimate system
resources.

Lemma 1 (y 2 Ux), (y = x or y 2 PDx)

Proof (by induction): Recall the de�nition of Ux in equation 19. First we
will prove the ) implication.

At the leaf, Ux = fxg. This ful�lls the �rst clause of the im-
plication, as the single member of the set is x, and therefore
the implication holds. This is the base case for the proof by
induction.

For a non-leaf system, the induction step assumes that the im-
plication is true for all primary children of x. This means that,
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for each child c of x, Uc contains all descendants of c, and c

itself. The �rst term adds x, which matches the �rst clause of
the implication. second term of equation 19 adds all the pri-
mary children of x and their descendants. All of these must,
by the de�nition of primary child and primary descendant, be
descendants of x. Therefore the second clause of the implication
holds, and the ) case is true.

Now for the ( implication:

By de�nition, x is always in Ux, so we need only prove that
y 2 PDx ) y 2 Ux.

At a leaf node there are no descendants, so the base case is
proven.

Once again, for an internal node, we assume that the implication
is true for all its primary children, i.e. 8c 2 PCx, y 2 PDc )
y 2 Uc, and that c 2 Uc. Therefore, the second term adds
all primary children of x, and all of their primary descendants,
which is to say it adds all the primary descendants of x. Thus,
y 2 PDx ) y 2 Ux. 2

Corollary 1 (y 2 Sx), (y = x or y 2 PDx)

Lemma 2 8k 2 PSx; Ux \ Sk = ;

Proof (by contradiction): Assume 9y 2 (Ux \ Sk) for some k 2 PSx

From lemma 1, y 2 Ux ) y = x or y 2 PDx.

By the de�nition of Sk, y 2 Sk ) y 2 Uk.

Again from lemma 1, y 2 Uk ) y = k or y 2 PDk.

By the de�nition of primary siblings, x and k are both primary children
of some parent, p. This implies that y has two primary paths to p, one
through x, and one through k. By de�nition, this cannot be, and so the
assumption is false.

Therefore, the lemma is true. 2

Corollary 2 8k 2 PSx; x 62 Sk

Corollary 3 8k 2 PSx; Ux \ Uk = Sx \ Uk = ;

Corollary 4 8k; j 2 PCx; k 6= j ) Uj \ Uk = Sj \ Sk = Sj \ Uk = ;

Lemma 3 y 2 Dx ) y 62 PDx
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Proof (by induction):

At the root, Dx = fxg. By de�nition, x 62 PDx.

For the induction step, assume that the lemma is true for all parents of
the node x. Suppose that 9y 2 (Dx \ PDx).

y cannot come from the �rst term in the de�nition of Dx, as x 62 PDx.
y cannot come from the second term, as that would violate the induction
assumption. From lemma 2, we know that y cannot come from the third
term. Therefore, y cannot exist, and the lemma is true for x in the
inductive step. 2

Theorem 1 (No system is represented more than once in a U vector)
8y 2 Ux; y 62 (Ux � y)

Assume 9y 3 y 2 (Ux� y). Then, based on equation 19, either y = x and
x 2 Uc for some c 2 PCx, or Uc1 \Uc2 6= ; for some c1; c2 2 PCx; c1 6= c2.

From lemma 1, if x 2 Uc, then x must be a primary descendant of itself,
which is not allowed. From corollary 4, Uc1 \ Uc2 = ;.

Therefore, y cannot exist, and the theorem is proven. 2

Corollary 5 (No system is represented more than once in a S vector)
8y 2 Sx; y 62 (Sx � y)

Theorem 2 (No system is represented more than once in a D vector)
8y 2 Dx; y 62 (Dx � y)

Assume 9y 3 y 2 (Ux � y). Then, based on equation 20, one of the
following must be true:

1. x 2 Dp for p 2 PPx

2. x 2 Sk for some k 2 PSx

3. Sj \ Sk for some j; k 2 PSx; j 6= k

4. Dp \ Sk for p 2 PPx and some k 2 PSx

By lemma 3, (1) cannot be true. Corollaries 2 and 4 eliminate cases (2)
and (3). For (4) to hold, a system simultaneously be a primary descendant
of p (corollary 1 and the fact that k 2 PCp) and also not be a primary
descendant (lemma 3). Therefore, (4) cannot hold.

Thus, a contradiction is reached and y cannot exist, so the theorem is
proven. 2

Therefore, by theorems 1 and 2, and corollary 5, we have proven that the semantics
for combining update vectors will not overestimate system resources.
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8 Concluding Remarks

We have described a distributed, hierarchical scheduling system for autonomous sys-
tems. Supporting scheduling in autonomous, heterogeneous systems is a di�cult task.
Because information about an autonomous system might not be exported, external
schedulers might have to make decisions based on incomplete information. If we want
our systems to be scalable, we must condense the information that describes a sys-
tem so that the size of an update message does not grow in relation to the number of
processors in the system. The heterogeneity of the system introduces di�culties in
the transfer of tasks, and makes the description of a system more complex.

We believe the work presented here will support many applications. Scientists will
be able to use a heterogeneous group of machines to solve complex computational
problems, idle workstations can be harnessed to run jobs, and research groups will be
able to combine their resources to solve problems in ways not possible before.

As part of our continuing work, we are using a prototype implementation with
simulation studies to determine the viability of our approach. We will also augment
the command interfaces for both users and administrators to increase their expressive
power, and are investigating the internalization and automation of some administra-
tive functions.
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