
Software Forensics: Can We Track Code to its
Authors?

Purdue Technical Report CSD–TR 92–010

SERC Technical Report SERC–TR 110–P

Eugene H. Spafford Stephen A. Weeber

Department of Computer Sciences
1398 Computer Science Building

Purdue University
West Lafayette, IN 47907–1398

19 February 1992

Abstract
Viruses, worms, trojan horses, and crackers all exist and threaten

the security of our computer systems. Often, we are aware of an
intrusion only after it has occurred. On some occasions, we may
have a fragment of code left behind — used by an adversary to gain
access or damage the system. A natural question to ask is “Can we
use this remnant of code to positively identify the culprit?”

In this paper, we detail some of the features of code remnants
that might be analyzed and then used to identify their authors.
We further outline some of the difficulties involved in tracing an
intruder by analyzing code. We conclude by discussing some future
work that needs to be done before this approach can be properly
evaluated. We refer to our process as software forensics, simi-
lar to medical forensics: we are examining the remains to obtain
evidence about the factors involved.

1 Introduction

An aspect of both computer crime and computer vandalism that makes
them more attractive activities is their anonymity. Whether the method

1



of attack is virus, worm, logic bomb, or account breaking, tracing the
actions back to an individual is generally an extremely difficult task. In
one well-known case, Cliff Stoll’s German hacker did not fear discipline
even after being detected, trusting in the inability of anyone to trace
his many network hops.[4] Authors of viruses distribute them without
worry of being identified as the source. Participants in discussions in
electronic forums tend to become more hostile than they ever would
in face-to-face conversations; the anonymity of the transaction lowers
their inhibitions.

Taking steps to remove the anonymity in computer use, such as more
complete session logging and improved network protocols that include
authentication information, can only help to discourage an attacker.
However, there are limits to the strength of methods that can be eco-
nomically employed. Furthermore, no method is 100% effective under
all circumstances.

Often, the evidence remaining after a computer attack has occurred
includes the instructions introduced into the system to cause the dam-
age. Viruses, for example, usually leave their code in the infected pro-
grams. These remnants of an attack may take many forms, including
programming language source files, object files, executable code, shell
scripts, changes made to existing programs, or even a text file written
by the attacker. It would be useful if these pieces of information could
be utilized in a way that could help identify or confirm the source of the
attack. This would be similar to the use of handwriting analysis by law
enforcement officials to identify the authors of documents involved in
crimes, or to provide confirmation of the role of a suspect.

Handwriting analysis involves identifying features of the writing in
question. A feature of the writing can be anything identifiable about
the writing, such as the way the i’s are dotted or average height of the
characters. The features useful in handwriting analysis are the writer-
specific features. A feature is said to be writer-specific if it shows only
small variations in the writings of an individual and large variations
over the writings of different authors.

Features considered in handwriting analysis today include shape
of dots, proportions of lengths, shape of loops, horizontal and vertical
expansion of writing, slant, regularity, and fluency.[10] The majority of
features in most handwriting are ordinary. However, most writing will
also contain features that set it apart from the samples of other authors,
features that to some degree are unusual.[7] A sample that contains i’s

2



dotted with a single dot probably will not yield much information from
that feature. However, if all of the o’s in the sample have their centers
filled in, that feature may identify the author.

Identification of writer-specific features generally requires many
samples. A person’s handwriting is expected to change both as time
passes and under different writing conditions. Too few samples can
lead to misidentification of writer-specific features. Additionally, care
must be taken in selecting samples that show the natural writing of an
individual. Individuals often attempt to hide their identity by disguis-
ing their writing.

Identification of computer code by matching identifying features
should likewise be possible. Programming, especially in a language rich
in data types and control structures, has considerable room for variation
and innovation. Even if coding is from detailed specifications, room ex-
ists for personalization. Programmers generally acknowledge that they
each have a unique coding style. Using appropriate stylistic elements
may help in the production, reuse, and debugging of code. Many texts
recommend elements of style to use when programming, and often pro-
grammers integrate selected elements of others’ styles into their own
repertoire as they gain experience programming (cf. [1, 9, 11, 6, 17]).

The keys to identifying the author of suspect code are selection of
an appropriate body of code and identification of appropriate features
for comparison. This may not be easy to do if the programmer has
attempted to hide his authorship, or if appropriate sample code is not
available. Nonetheless, our personal experience is such that we believe
important features might still be present for analysis, in some cases. At
the least, analysis of the characteristics of the code might well lead to
the identification of suspects to examine further.

Additionally, if sufficient background research is done to establish a
good statistical base, and if large enough samples of code are present,
known statistical methods currently applied to determine authorship of
prose may also be applied to code.[12] These methods, although perhaps
not certain, may possibly be combined with the analysis of stylistic
features to provide clues to the authorship of a piece of code.

In the following section, we have detailed some of the features that
we believe to be the most useful in such a comparison. We believe that
an in-depth study of these in features in the code of many programmers
may result in some useful forensic information.

3



2 Analysis of Unauthorized Code

We will consider two different cases where code remnants might be
analyzed. These differ in the nature of the code that was left for analysis.

2.1 Analysis of Executable Code

Often, the remnant of an attack is a piece of executable code, such as
a virus or worm program. Unfortunately, many of the features of the
code that could have been used in analysis have been stripped away
during compilation. Comments and indentation have been removed,
and identifiers have been replaced by memory addresses or register
names. Additionally, optimizations may have been performed on the
code, possibly giving the executable code a very different structure than
the original program source.

For example, an optimizing compiler might generate the same exe-
cutable code for each of the following C language program fragments:

for (x = 0; x < 10; x++) {
func(x);

}

x = 0;
while (x < 10) {

func(x);
++x;

}

x = 0;
while (TRUE) {

func(x);
if (x++ == 10) break;

}

x = 1;
do {

func(x-1);
x++;

} while (x <= 10);

4



The original source code might have actually been in Fortran:

DO 15 X=0, 9, 1
CALL FUNC(X+0)

15 CONTINUE

or in Pascal:

for x := 0 to 9 do
func(x);

Each of these different source code segments exhibits features that
could possibly be used in identifying the style of programming of an
individual. These features may be lost to the examiner of the resultant
executable code.

For example, during the analysis of the Internet Worm program ([5,
15]), that remnant was reverse-engineered to C programs that compiled
to identical binary versions. In many cases, the analysts chose arbitrary
names for variables and local subroutines — the compiler would not
save the values, so the choices did not matter. When the disassembled
code was later matched against a copy of the “real” source code, many
small differences with the reverse-engineered copies were observed that
compiled to the same binary.

Executable code, even if optimized, still contains many features that
may be considered in the analysis:

Data Structures and Algorithms Competence with, and preference
for, certain data structures may be extracted from executable code.
This may provide a clue to the background of the code author. For
example, it is unreasonable to suspect a beginning programmer
of authoring code that made extensive use of a B-tree for data
storage. Similarly, the choice of algorithms used in a program
may be a feature worthy of analysis. It seems likely to conclude
that a programmer will continue to use algorithms with which
they are particularly comfortable.1

As an example, consider the Internet Worm mentioned earlier.
The code used linked lists as the primary data structure for build-
ing long lists that were repeatedly searched. This was certainly a

1Our experience with both undergraduate and graduate student programmers sup-
ports this supposition.

5



poor approach, as the repeated searches of long lists dramatically
reduced the efficiency of the program. This was noted in [15], and
a correspondent later related that the Worm’s author, Robert T.
Morris, had been instructed in the Lisp programming language
in his first undergraduate data structures and algorithms course.
Although a coincidence such as this is certainly not sufficient upon
which to base any specific action, it may help reinforce other evi-
dence, obtained through other means.

Related to this is the manner in which data structures are ac-
cessed. In languages with both pointers and arrays, the choice of
which is used is often very programmer-specific. Likewise, using
overlapped structures (the EQUIVALENCE statement in Fortran,
and the union statement in C, for instance) provide an indicator.
Some programmers use these structures, while others use coercion
and bitwise operations.

Compiler and System Information Executable code may contain tell-
tale signs of its origin. A unique ordering of the instructions may
point to a specific compiler as the source of the code. The code may
contain invocations of system calls found only in certain operat-
ing systems. These bits of information may rule out or support
individuals as the author of the code.

In the case of many viruses, analysis of the binary code may reveal
that it was written in C or Pascal from a certain vendor. This
can be determined because support routines (sometimes known as
“thunks”) and library calls unique to that vendor are present in
the binary.

Programming Skill and System Knowledge The level of expertise
of the author of the program, with both the operating system in
question and computer programming in general, may be estimated
from the executable code. For example, programming that du-
plicates functionality already provided by standard system calls,
makes use of recursion, or makes proper calls to advanced system
functions could indicate different levels of knowledge and skill.

Additionally, the inclusion or omission of error-checking code is
also quite telling. Some programmers seldom (or never) include
exception handling code in their programs. Others always include
such code. In instances where the code is sometimes included, this

6



may provide an identifiable set of routines that the author always
checks (perhaps because of past program failures with those rou-
tines). This set could then be compared with the set from other,
known programs as a metric of similarity.

Choice of System Calls The support functions used in the code may
also indicate something about the background of the program-
mer. For instance, in the UNIX system, there are sometimes two
difference calls to locate the first instance of a particular charac-
ter in a string. The index routine is derived from the Berkeley
(BSD) version of UNIX, and the strchr function is derived from
the System V version of UNIX. Users will usually exhibit a distinct
preference for one call or the other when programming in an en-
vironment that provides both functions. Experience with reading
and porting code has convinced us there are many such observable
preferences.

Errors Programmers will usually make errors in all but the simplest
or most carefully coded programs. Some programmers will consis-
tently make the same types of errors, such as off-by-one errors in
loops processing arrays.2 Cataloging and comparing these faults
may provide yet another metric for determining authorship of sus-
pect code.

It is possible that the symbol table may still be present in the ex-
ecutable, as is often the case when the compiler is told to generate
debugging information. In this case, several of the features normally
associated with program source code may also be examined in the exe-
cutable code.

2.2 Analysis of Source Files

Program source code provides a far richer base for writer-specific pro-
gramming features.

Language Perhaps the most immediate feature of the code is the pro-
gramming language chosen by the author. The reasons behind
the choice may not be obvious, but could include availability and

2This same tendency can be used in other contexts, to direct software testing to likely
faults.[2, 16]

7



knowledge. It would be unreasonable to suspect an individual of
being the author of a program written in a programming language
that he does not know.

Formatting The formatting of source code often exhibits a very per-
sonal style. Format also tends to be consistent between programs,
making it easier for an author to read what she has written.
These factors indicate that the formatting style of code should
yield writer-specific features. Placement of compound statement
delimiters, multiple statements per line, format of type declara-
tions, formatting of function arguments, and many other charac-
teristics may be identified in the code in question. This assumes
that the programming environment in question does not have a
widely-used, rigid code formatter (“pretty-printer”) that may have
produced the observed style.

Another bit of information that could become available in this
analysis is editor choice. For example, it may be possible to recog-
nize the formatting styles produced by and editor such as Emacs,
or to detect embedded mode-setting commands. Syntax-directed
program editors may also provide a distinct and unusual style,
should they become somewhat more common.

Special features Some compilers support pragmas or special macros
that are not present on every system. The presence of any of these
special features may provide clues as to the software development
environment of the author. Inclusion of conditional compilation
constructs, especially those involving initialization and declara-
tion files, may also provide similar information about environ-
ment.

Comment Styles Users often tend to have a distinctive style of com-
menting their programs. Some use lines of a graphic character to
set off comments from code. Others place comment headers above
each function, describing it. Still others avoid comments at all
costs.

The frequency and detail of the comments present may also be
distinctive. Some programmers comment with short tags, and
others write whole paragraphs. This may result in a measurable
pattern.

8



Variable Names Choice of variable names is another aspect of pro-
gramming that often indicates something about the author. Some
programmers prefer to connect words in identifiers with an un-
derscore, others take the SmallTalk approach and capitalize the
first letter of each word with no separator. Ardent software en-
gineers may use a naming scheme, such as Meta-Programming,
that includes type information in the variable name.[13] Still oth-
ers would never dream of using more than one or two characters in
a variable name. A useful metric for identifier analysis might be
something such as the distribution of Hamming distances between
names.

Most experienced programmers have a set of “utility” variable
names they use for local variables when coding small segments.
Common examples include junk, ii, and indx. An analysis of
these names may be useful in matching against other code by the
same author.

Spelling and Grammar Many programmers have difficulty writing
correct prose. Misspelled variable names (e.g.,TransactoinReciept)
and words inside comments may be quite telling if the misspelling
is consistent. Likewise, small grammatical mistakes inside com-
ments or print statements, such as misuse or overuse of em-dashes
and semicolons might provide a small, additional point of similar-
ity between two programs.

For example, a former colleague of one of us would consistently
misspell forms of the word “separate.” Thus, seeing a prompt in a
program that read

Enter 3 values, seperated by a blank:

was a fairly certain indicator that he had written the code.

Use of Language Features The way in which authors make use of
a programming language may also differentiate them. Some au-
thors may consistently use a subset of the features available, while
others may make more complete use of all features. For example,
an author may consistently use a while loop, even when a for/do
or repeat..until loop would be more appropriate. Similarly,
the use of nested if statements in place of case statements, or

9



the (lack of) specification of default options in case statements
could be differentiating features of code.

Other examples that fall into this category include returning val-
ues in procedure parameters versus function return values, use
of enumerated data types, use of subrange types, use of bitwise
boolean operations, use of constant data types, and use of struc-
tures and pointers. The average size of routines may also be used
as an identifying feature: some programmers will code 300 line
modules, and others will never have a module larger than will fit
on the screen all at once.

One aspect of use of language features relates to computer lan-
guages that a programmer may know best or learned first. For
instance, programmers who spend most of their time using proce-
dural languages seem to seldom use recursion. Learning program-
ming in a language such as Basic or Fortran is also likely to lead to
reduced use of while and do : : :until structures. Further study
of such influences may yield a discernable tendency to use or avoid
particular language features.

Scoping The ratio of global to local identifiers may be an author-
specific trait. Additionally, declaring helper functions as acces-
sible only in a limited scope may also contribute to identification
of the programmer.

Execution paths A common factor found when analyzing student pro-
grams and also when analyzing some malicious code3 is the pres-
ence of code that cannot be executed. The code is present either as
a feature that was never fully enabled, or is present as code that
was present for debugging and not removed. This is different from
code that is present but not executed because of an error in a logic
condition — it is code that is fully functional, but never referenced
by any execution path.

As an example, consider the following section of code in the C lan-
guage:

#define DEBUG 0
main() {

3Including [15].

10



/* some amount of code here */

if (DEBUG) {
printf ... many debugging values here ...

}

In this example the code will never be executed. The manner in
which it is elided leaves the code intact, and may provide some
clue to the manner in which the program was developed. Further-
more, it may contain references to variables and code that was not
included in working parts of the final program — possibly provid-
ing clues to the author and to other sources of code used in this
program.

Bugs Some authors consistently make the same mistakes in their cod-
ing. Often, these are faults that only rarely cause problems, and
then only with extremal values or when ported to other hardware.
It is precisely because these bugs seldom cause problems that users
tend to continue to introduce them into their code. The presence of
identifying bugs should provide very strong evidence of similarity
between two pieces of code.

As examples, we have noted the following in code by both students
and colleagues:

� Failure to code bitwise operations to reflect different byte
ordering on the target machine — the so-called “little-endian”
vs. “big-endian” problem.

� Failure to check for numeric overflow or underflow, or assum-
ing that the internal numeric representation was of a certain
(different) form (cf. [16]).

� Assuming that uninitialized pointers can be dereferenced with-
out generating a fault.

� Assuming the stack can hold very large value-copy parameter
structures when doing subroutine calls.

� Failure to check error returns from some system calls that
can (rarely) fail.

11



Metrics Software metrics might be employed to identify an individual’s
average traits. Some applicable metrics could include number of
lines of code per function, comment-to-code ratio, function com-
plexity measures, Halstead measures, and McCabe metrics.[3]

3 Application and Difficulties

It seems clear that there are many potential factors that could be exam-
ined to determine authorship of a piece of software. Ideally, this analysis
would be used to identify a suspect, and then a search would be made of
storage and archival media to locate incriminating sources. However,
a more likely scenario would see a set of metrics and characteristics
derived from the code remnant and then compared with representa-
tive samples written by the suspects. This comparison must be made
with considerable care, however, to prevent complicating factors from
producing either false positive or false negative indications.

One such complication, for instance, is the amount of code compared.
A small amount of suspect code (e.g., a computer virus) might not be
sufficient to make a reasoned comparison unless very unusual indicators
are present.

Another complication is the reuse of code. If the author has reused
code from her earlier work, or code written by others, the effect may be
to skew any metrics derived from the suspect code. It might be enough
to correctly indicate original authorship, but that might not identify
the actual culprit. In some cases, code reuse may be obvious and it may
be omitted from the comparison. However, there may be cases where
that is not possible. Likewise, if the suspect code was written as part
of a collaboration, the characteristics of the individual authors may be
subsumed or eliminated entirely.

A clever programmer, aware of this method, might disguise his code.
This would probably involve using different algorithms and data struc-
tures than what he would normally use. Although this might eliminate
the possibility of a match based on internal characteristics, it might
also make the code more likely to fail in use. This should also make the
programmer use more testing, and keep intermediate versions of the
program that could later be matched against the suspect code.

There is also the potential that the underlying application may have
a strong influence on the overall style and nature of the code. For in-

12



stance, if we are attempting to match characteristics of a small MS-DOS
boot record virus, and the code we compare against is for a UNIX-based
screen editor, it is unlikely that we would find much correspondence be-
tween the two, even if they were written by the same author. Therefore,
we must be certain that we compare similar bodies of code.

4 Concluding Remarks

There are many differences between handwritten prose and computer
programs. Handwriting samples are usually fixed in an instant, and
prose is usually not incrementally developed, while a program evolves
over time. Multiple changes to a section of code as a program is devel-
oped can lead to a structure that the author would have been unlikely
to create under other circumstances.

Coding is also different in that code written by others is often in-
corporated into a program. Often, a program is not the result of the
influence of only one author. We suspect that this would severely im-
pair the selection of writer-specific code features without knowledge of
the development of the program.

Nonetheless, if there is a sufficiently large sample of code and suf-
ficient suspect code, if there are unusual features present, and if we
have correctly chosen our points of comparison, this method may prove
to be quite valuable. Currently, similar ad hoc methods are used by
instructors when they compare student assignments for unauthorized
collaboration (cheating). The samples are usually not big, but the char-
acteristics are often distinctive enough to make valid conclusions about
authorship. Developing and applying more formal methods should only
improve the accuracy of such methods, and make them available for
more in-depth investigations.

Not only would a formal method of software forensics aid in the de-
termination of malicious code authorship, it would have other uses as
well. For instance, determining authorship of code is often central to
many lawsuits involving trade secret and patent claims. The character-
istics we have outlined in this paper might be used to determine if code
is, in fact, original with an author or derived from other code. However,
a rigorous mathematical approach is needed if any of these kinds of
results are to be applied in a court of law (cf. [14]).

We believe that if this approach is developed, it may also prove useful

13



in applications of reverse-engineering for reuse and debugging. The
analysis of code to determine characteristics is, at the heart, a form of
reverse-engineering. Existing techniques, however, have focused more
on how to recover specifications and programmer decisions rather than
to determine programmer-specific characteristics (cf., [8]).

Further research into this technique, based on examination of large
amounts of code, should provide further insight into the utility of what
we have proposed. In particular, studies are needed to determine which
characteristics of code are most significant, how they vary from pro-
grammer to programmer, and how best to measure similarities. Dif-
ferent programming languages and systems should be studied, to de-
termine environment-specific factors that may influence comparisons.
And most importantly, studies should be conducted to determine the
accuracy of this method; false negatives can be tolerated, but false pos-
itives would indicate that the method is not useful for any but the most
obvious of cases.

Acknowledgments

Our thanks to Richard DeMillo for suggesting some related references
of interest. Thanks to both Ronnie Martin and Tom Longstaff for their
comments. We are grateful to Gene Schultz for his comments, and for
encouraging us to commit our long-standing interest in this area to
paper.

References

[1] Louis J. Chmura and Henry F. Ledgard. COBOL with Style: Pro-
gramming Proverbs. Hyden Book Company, Inc., Rochelle Park,
NJ, 1976.

[2] B. J. Choi, R. A. DeMillo, E. W. Krauser, R. J. Martin, A. P. Mathur,
A. J. Offutt, H. Pan, and E. H. Spafford. The Mothra tools set.
In Proceedings of the 22nd Hawaii International Conference on
Systems and Software, pages 275–284, Kona, HI, January 1989.

[3] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering
Metrics and Models. Benjamin/Cummings, 1986.

14



[4] The Cuckoo’s Egg. Clifford Stoll. Doubleday, New York, NY, 1989.

[5] Mark W. Eichin and Jon A. Rochlis. With microscope and tweezers:
an analysis of the Internet virus of November 1988. In Proceedings
of the Symposium on Research in Security and Privacy, Oakland,
CA, May 1989. IEEE-CS.

[6] L.W. Cannon et. al. Recommended C Style and Coding Standards.
Pocket reference guide. Specialized Systems Consultants, 1991.
Updated version of AT&T’s Indian Hill coding guidelines.

[7] Joseph A. Fanciulli. The process of handwriting comparison. FBI
Law Enforcement Bulletin, pages 5–8, October 1979.

[8] M. F. Interrante and Z. Basrawala. Reverse engineering annotated
bibliography. Technical Report SERC-TR-12-F, Software Engineer-
ing Research Center, University of Florida, January 1988.

[9] Brian W. Kernighan and P. J. Plauger. The Elements of Program-
ming Style. Mcgraw-Hill, second edition, 1978.

[10] V. Klement, R. Naske, and K. Steinke. The application of image
processing and pattern recognition techniques to the forensic anal-
ysis of handwriting. In 1980 International Conference: Security
Through Science and Engineering, pages 5–11, 1980.

[11] Henry F. Ledgard, Paul A. Nagin, and John F. Hueras. Pascal with
Style. Hayden, 1979.

[12] Frederick Mosteller and David L. Wallace. Applied Bayesian and
Classical Inference: The Case of the Federalist Papers. Springer
Series in Statistics. Springer-Verlag, 1964.

[13] Charles Simonyi. Meta-programming: A software production tech-
nique. Byte, pages 34–45, September 1991.

[14] Herbert Solomon. Confidence Intervals in Legal Settings, pages
455–473. John Wiley & Sons, 1986.

[15] Eugene H. Spafford. The Internet worm program: an analysis.
Computer Communication Review, 19(1), January 1989. Also is-
sued as Purdue CS technical report TR-CSD-823.

15



[16] Eugene H. Spafford. Extending mutation testing to find environ-
mental bugs. Software Practice and Experience, 20(2):181–189,
February 1990.

[17] Dennie Van Tassel. Program Style, Design, Efficiency, Debugging,
and Testing. Prentice-Hall, Englewood Cliffs, NJ, second edition,
1978.

16


