CS 526: Information Security

- Network Attacks
Network Protocols Stack

Application protocol

TCP protocol

Application

Transport

Network

Data Link

Network Access

IP protocol

Data Link

IP protocol

Network

Link

Data Link

Link
Protocols

<table>
<thead>
<tr>
<th>Application</th>
<th>DNS, TFTP, TLS/SSL, FTP, Gopher, HTTP, IMAP, IRC, NNTP, POP3, SIP, SMTP, SNMP, SSH, TELNET, ECHO, BitTorrent, RTP, PNRP, rlogin, ENRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BGP</td>
</tr>
<tr>
<td>Transport</td>
<td>TCP, UDP, DCCP, SCTP, IL, RUDP</td>
</tr>
<tr>
<td>Internet</td>
<td>OSPF, ICMP and IGMP</td>
</tr>
<tr>
<td></td>
<td>IP (IPv4, IPv6)</td>
</tr>
<tr>
<td></td>
<td>ARP and RARP</td>
</tr>
<tr>
<td>Network access</td>
<td>Ethernet, Wi-Fi, token ring, PPP, SLIP, FDDI, ATM, Frame Relay, SMDS</td>
</tr>
</tbody>
</table>
Types of Addresses in Internet

• MAC addresses in the network access layer
 – 48 bits or 64 bits
• IP addresses for the network layer
 – 32 bits for IPv4, and 128 bits for IPv8
 – E.g., 128.3.23.3
• IP addresses + ports for the transport layer
 – E.g., 128.3.23.3:80
• Domain names for the application/human layer
 – E.g., www.purdue.edu
Routing and Translation of Addresses

• Translation between IP addresses and MAC addresses
 – Address Resolution Protocol (ARP) for IPv4
 – Neighbor Discovery Protocol (NDP) for IPv6

• Routing with IP addresses
 – TCP, UDP, IP for routing packets, connections
 – Border Gateway Protocol for routing table updates

• Translation between IP addresses and domain names
 – Domain Name System (DNS)
Threats in Networking

• Confidentiality
 – Packet sniffing

• Integrity
 – Session hijacking

• Availability
 – Denial of service attacks

• Common
 – Address translation poisoning attacks
 – Routing attacks
Concrete Security Problems

- ARP is not authenticated
 - ARP spoofing (or ARP poisoning)
- Network packets pass by untrusted hosts
 - Packet sniffing
- TCP state can be easy to guess
 - TCP spoofing attack
- DNS is not authenticated
 - DNS poisoning attacks
Address Resolution Protocol (ARP)

- Primarily used to translate IP addresses to Ethernet MAC addresses
- Also used for IP over other LAN technologies, e.g., FDDI, or IEEE 802.11
- Each host maintains a table of IP to MAC addresses
- Message types:
 - ARP request
 - ARP reply
 - ARP announcement
ARP Spoofing (ARP Poisoning)

- Send fake or 'spoofed', ARP messages to an Ethernet LAN.
 - To have other machines associate IP addresses with the attacker’s MAC

- Defenses
 - static ARP table
 - detection: Arpwatch, DHCP snooping

- Legitimate use
 - redirect a user to a registration page before allow usage of the network
Internet Protocol

- **Connectionless**
 - Unreliable
 - Best effort

- **Transfer datagram**
 - Header
 - Data

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4</td>
</tr>
<tr>
<td>Header Length</td>
<td>20</td>
</tr>
<tr>
<td>Type of Service</td>
<td>0</td>
</tr>
<tr>
<td>Total Length</td>
<td>6000</td>
</tr>
<tr>
<td>Identification</td>
<td>1234</td>
</tr>
<tr>
<td>Flags</td>
<td>0000</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>0</td>
</tr>
<tr>
<td>Time to Live</td>
<td>64</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>0x9135</td>
</tr>
<tr>
<td>Source Address</td>
<td>192.168.1.1</td>
</tr>
<tr>
<td>Destination Address</td>
<td>192.168.2.1</td>
</tr>
<tr>
<td>Options</td>
<td></td>
</tr>
<tr>
<td>Padding</td>
<td></td>
</tr>
<tr>
<td>IP Data</td>
<td>12345678901234567890123456</td>
</tr>
</tbody>
</table>

IP Routing

- Internet routing uses numeric IP address
- Typical route uses several hops
IP Protocol Functions (Summary)

- **Routing**
 - IP host knows location of router (gateway)
 - IP gateway must know routes to other networks

- **Fragmentation and reassembly**
 - If max-packet-size less than the user-data-size

- **Error reporting**
 - ICMP packet to source if packet is dropped
Packet Sniffing

- Promiscuous Network Interface Card reads all packets
 - Read all unencrypted data (e.g., “ngrep”)
 - ftp, telnet send passwords in clear!

Prevention: Encryption (IPSEC, TLS)
Tools for Network Sniffing

- tcpdump
- Windump
- Snort (network sniffer and network intrusion detection system)
- Wireshark (formerly Ethereal)
 - history of lot of buffer overflow vulnerabilities
- Sniffiy
- Dsniff
User Datagram Protocol

- IP provides routing
 - IP address gets datagram to a specific machine
- UDP separates traffic by port (16-bit number)
 - Destination port number gets UDP datagram to particular application process, e.g., 128.3.23.3:53
 - Source port number provides return address
- Minimal guarantees
 - No acknowledgment
 - No flow control
 - No message continuation
Transmission Control Protocol

- Connection-oriented, preserves order
 - Sender
 - Break data into packets
 - Attach packet numbers
 - Receiver
 - Acknowledge receipt; lost packets are resent
 - Reassemble packets in correct order
TCP Handshake

C

SYN_C

SYN_S, ACK_C

ACK_S

S

Listening

Store data

Wait

Connected
TCP Sequence Numbers

- Need high degree of unpredictability
 - If attacker knows initial seq # and amount of traffic sent, can estimate likely current values
 - Send a flood of packets with likely seq numbers
 - Attacker can inject packets into existing connection
- Some implementations are vulnerable
TCP Session Hijacking

- Each TCP connection has an associated state
 - Client IP and port number; same for server
 - Sequence numbers for client, server flows

- Problem
 - Easy to guess state
 - Port numbers are standard
 - Sequence numbers often chosen in predictable way
Risks from Session Hijacking

- Inject data into an unencrypted server-to-server traffic, such as an e-mail exchange, DNS zone transfers, etc.
- Inject data into an unencrypted client-to-server traffic, such as ftp file downloads, http responses.
- IP addresses often used for preliminary checks on firewalls or at the service level.
- Hide origin of malicious attacks.
- Carry out MITM attacks on weak cryptographic protocols.
 - often result in warnings to users that get ignored
- Denial of service attacks, such as resetting the connection.
Blind TCP Session Hijacking

- A, B trusted connection
 - Send packets with predictable seq numbers
- E impersonates B to A
 - Opens connection to A to get initial seq number
 - DoS B’s queue
 - Sends packets to A that resemble B’s transmission
 - E cannot receive, but may execute commands on A

Attack can be blocked if E is outside firewall.
Scanning

- Port scanning: The process of determining the services available on a computer, by sending packets to several ports
 - Useful to system administrators
 - Can also be used by attackers

- Vulnerability scanning: Communication on the ports having available services, for the purpose of determining vulnerabilities to available exploits
Scanning

- For an IP address, attacker aims to determine
 - which ports respond to queries
 - which vulnerabilities are present
- Often used before an attack is launched
 - Attack follows scanning about 50% of the time
- Scan probes a range of ports and IP addresses
 - *Footprint* of a scan = set of IP/port combinations
 - Independent of their order
Scan Classification

- **Horizontal** scan: 1 port, range of IP address
 - Attacker has 1 exploit, is interested in all hosts with the service corresponding to that exploit
- **Vertical** scan: 1 host, range of ports
 - Attacker is interested in a specific target
- **Block** scan = combines horizontal & vertical
- **Distributed** scan aims to evade blacklisting
 - Requests come from different IP addresses
Half-Open Scan (most common)

- Scanner sends a SYN packet
- A SYN-ACK response indicates an open port
 - Else a RST-ACK response
- Scanner responds to SYN-ACK with RST
 - Aborts the connection (incomplete handshake)
 - Without RST, it would timeout (and look DoS-like)
 - Leaves no trace in application-level logs (unlike using TCP connect(), which would be logged)
Port Scan Detection

• Distinguish between benign and scan traffic
 – Do so by using differences in their traffic patterns
• Benign TCP connection has SYN/FIN symmetry
 – TCP setup (3-step handshake: SYN, SYN-ACK, ACK)
 – Traffic after session is established
 – TCP tear-down (FIN)
• No such SYN/FIN symmetry in TCP scan traffic
 – Handshake is aborted (SYN, SYN-ACK, RST)
Scan Detection with Counting Bloom Filter

- k hash functions H_1, \ldots, H_k (outputs $\leq n-1$)
- k arrays C_1, \ldots, C_k of size n each, initialized to 0
- Upon seeing a SYN, increment by 1 every $C_i [H_i(\text{IP})]$ for $i = 1, \ldots, k$
- Upon seeing a FIN, decrement by 1 every $C_i [H_i(\text{IP})]$ for $i = 1, \ldots, k$
- For benign connection, all k counters are small
 - If large, the IP address is involved in a scan
Properties of Counting Bloom Filter Structure

• Can test whether a given element is stored
 – If all k counter values for it are nonzero then “Yes” (but not surely – false positives are possible)
 – No false negatives (a zero counter value implies a definite “No”)

• Well suited for implementing scan detection
 – Routers have limited memory and spare cycles

• Cannot list stored elements (but: not needed)
Is it Legal to Scan

• … if scan is not followed by an actual attack?
• Issue is not yet settled (“doorknob rattling”)
• Depends on ability to prove intent to attack
 – Intent is often erroneously believed to be present (e.g.,
 when legitimate scan accidentally hit an unintended
 web server and triggered an arrest)
 – Even when present, intent can be hard to prove
• Civil lawsuits easier to win (scanner pays $s)
SYN Flooding

C

SYN_{C1}

SYN_{C2}

SYN_{C3}

SYN_{C4}

SYN_{C5}

S

Listening

Store data
SYN Flooding

- Attacker sends many connection requests
 - Spoofed source addresses
- Victim allocates resources for each request
 - Connection requests exist until timeout
 - Old implementations have a small and fixed bound on half-open connections
- Resources exhausted \Rightarrow requests rejected

- No more effective than other channel capacity-based attack today
Smurf DoS Attack

- Send ping request to broadcast addr (ICMP Echo Req)
- Lots of responses:
 - Every host on target network generates a ping reply (ICMP Echo Reply) to victim
 - Ping reply stream can overload victim

Prevention: reject external packets to broadcast address
SYN Flood Mitigation

• System configuration
 – Reduce the timeout to (e.g.) 10 seconds (drawback: denies access to legitimate but slower connections that require a higher timeout)
 – Increase the size of the queue (drawback: higher resource usage; can be flooded anyway)
 – Disable non-essential services, reducing the number of ports that can be attacked
SYN Flood Mitigation (cont’d)

- Router configuration, e.g.,
 - Block incoming packets that have source addresses from the internal network (an instance of ingress filtering)
 - Block outgoing packets that have source addresses from outside the internal network (an instance of egress filtering)
 - Issues with Mobile IP (mobile device has same IP address while it moves from one network to another)
Syn Flood Mitigation (cont’d)

- Monitor the TCP traffic within a local area network and figure out which are illegitimate connections
 - Send RST for the illegitimate connections (which closes the connection)
 - Does not require protocol stack modification
 - Must promptly and reliably distinguish bad addresses from good addresses
Ping of Death Attack

- Attacker sends a flood of pings to the victim
 - Victim’s bandwidth is saturated, as victim is unable to keep up with the flood
- Attack requires attacker’s bandwidth to be greater than the victim’s bandwidth
 - Attacker’s bandwidth is limited by the smallest bandwidth on the attack route
 - If it is smaller than the victim’s bandwidth then the attack fails
Teardrop Attack

- Recall: Fragmentation of IP packets
 - Broken into smaller pieces
 - Require re-assembly
- Attack exploits bugs in re-assembly code
- Attacker sends malformed fragments
 - Overlapping (e.g., second fragment contained in first fragment)
 - Oversized
 - …
 - Unexpected conditions, can cause crash
Low-rate DoS Attack

- Attack throttles TCP flows
 - Brings down to a small fraction of normal rate, in a hard to detect manner

- Attack relies on TCP’s congestion control
 - TCP congestion control is very robust, but relies on implicit assumptions of cooperation
 - Exploited in high-rate attacks (e.g., flooding)
 - Detection mechanisms rely on the high rate
 - Low-rate attacks elude such detection
Low-rate DoS Attack (cont’d)

- Attacker maintains a low average rate, but sends *high-rate bursts* for very brief periods of time
 - A burst tricks TCP to respond as if high congestion (and reduce throughput)
 - Attacker maintains the reduced throughput situation with periodic bursts (yet low average rate)
- Hard to detect
Low-rate DoS Attack Mitigation

• Deterministic TCP congestion control behavior makes attack easier
 – Attacker can exploit TCP’s retransmission timeout mechanism
 – Attacker can time the bursts for optimal damage (periodic bursts of chosen period)

• Can be mitigated through randomization of TCP’s retransmission timeout parameters
 – But not eliminated without considerable performance sacrifice (weakness is inherent)
Traffic Hijacking

• Corruption of dynamic routing tables
 – A node lies, so as to become “next hop” to destination X on other nodes’ routing tables

• In observed attacks, multiple nodes worked in a coordinated manner
 – Diverted huge North-American traffic through foreign countries
 – Traffic was surely observed, possibly modified (“person in the middle attack”)
Packet Drop, Unintentional DoS

- Packet drop attacks
 - Blackhole attack – router drops all packets (ends up being removed from routing tables)
 - Grayhole attack – router selectively and/or intermittently drops packets

- Unintentional DoS, e.g.,
 - Link from a high-traffic site to a low-traffic one
 - If name is a short edit distance away from the name of a high-traffic site (e.g., utube)
Forged TCP Resets

- Flip the “reset” flag in TCP header from 0 to 1
- Kills the connection (all its traffic is discarded)
- Often (but not always) an attack
 - Can be useful for a defensive tool against suspicious connections
- Was used (until 2008) by ISPs to cripple certain applications (e.g., peer-to-peer)
 - FCC ordered a stop to the practice
DNS Hijacking

- Subversion of DNS queries
- Done by attackers (e.g., for phishing where you’re sent to a fake version of your bank’s web site)
- Done by ISPs
 - For collecting statistics
 - For displaying their choice of ads (for which they collect money)
 - Bad for customers, can break other functionality
Pharming

• Redirection of a website’s traffic to a fake site
• Can happen in many ways, e.g.,
 – Malware overwrites local “hosts” file (that has IP addresses, bypassing the need for DNS)
 – Router compromise, e.g., malware-ridden firmware, or overwriting in the router the “trusted DNS server” entry with a rogue one under the control of the attacker (the router’s entry takes precedence over the ISP-suggested DNS server)
DoS vulnerability caused by session hijacking

• Suppose attacker can guess seq. number for an existing connection:
 – Attacker can send Reset packet to close connection. Results in DoS.
 – Naively, success prob. is $1/2^{32}$ (32-bit seq. #'s).
 – Most systems allow for a large window of acceptable seq. #'s
 • Much higher success probability.
• Attack is most effective against long lived connections, e.g. BGP.
Categories of Denial-of-service Attacks

<table>
<thead>
<tr>
<th>Locally</th>
<th>Stopping services</th>
<th>Exhausting resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Process killing</td>
<td>• Spawning processes to fill the process table</td>
</tr>
<tr>
<td></td>
<td>• Process crashing</td>
<td>• Filling up the whole file system</td>
</tr>
<tr>
<td></td>
<td>• System reconfiguration</td>
<td>• Saturate comm bandwidth</td>
</tr>
<tr>
<td>Remotely</td>
<td>• Malformed packets to crash buggy services</td>
<td>• Packet floods (Smurf, SYN flood, DDoS, etc)</td>
</tr>
</tbody>
</table>

- Stopping services
 - Process killing
 - Process crashing
 - System reconfiguration

- Exhausting resources
 - Spawning processes to fill the process table
 - Filling up the whole file system
 - Saturate comm bandwidth
Internet Control Message Protocol

• Provides feedback about network operation
 – Error reporting
 – Reachability testing
 – Congestion Control

• Example message types
 – Destination unreachable
 – Time-to-live exceeded
 – Parameter problem
 – Redirect to better gateway
 – Echo/echo reply - reachability test
 – Timestamp request/reply - measure transit delay
Distributed DoS (DDoS)
Hiding DDoS Attacks

- Reflection
 - Find big sites with lots of resources, send packets with spoofed source address, response to victim
 - PING => PING response
 - SYN => SYN-ACK

- Pulsing zombie floods
 - each zombie active briefly, then goes dormant;
 - zombies taking turns attacking
 - making tracing difficult
Cryptographic network protection

• Solutions above the transport layer
 – Examples: SSL and SSH
 – Protect against session hijacking and injected data
 – Do not protect against denial-of-service attacks caused by spoofed packets

• Solutions at network layer
 – Use cryptographically random ISNs [RFC 1948]
 – More generally: IPsec
 – Can protect against
 • session hijacking and injection of data
 • denial-of-service attacks using session resets