Trusted Operating Systems and Assurance
Plan for this lecture

- Trusted vs. trustworthy, TCB
- Security features of a “Trusted OS”
- Assurance criteria
 - TCSEC
 - Common criteria
Trusted vs. Trustworthy

- A component of a system is trusted means that
 - the security of the system depends on it
 - if the component is unsecure, so is the system
 - determined by its role in the system

- A component is trustworthy means that
 - the component deserves to be trusted
 - e.g., it is implemented correctly
 - determined by intrinsic properties of the component

Trusted Operating System is actually a misnomer
Terminology: Trusted Computing Base

- The set of all hardware, software and procedural components that enforce the security policy.
 - to break security, an attacker must subvert one or more of them.

- What constitutes the conceptual Trusted Computing Base (TCB)?
 - hardware, kernel, system binaries, system configuration files, etc.
Terminology: Trusted Computing and Trusted Platform Module

- Trusted Computing means that the computer will consistently behave in specific ways, and those behaviors will be enforced by hardware and software.

- Trusted Computing Group
 - an alliance of Microsoft, Intel, IBM, HP and AMD
 - promotes a standard for a ‘more secure’ PC.
 - formerly Trusted Computing Platform Alliance (TCPA)

- Trusted Platform Module (TPM)
 - a specification by TCG or implementation of the specification
 - a hardware module (integrated chip) that provides
 - secure generation of cryptographic keys,
 - storage of keys that cannot be retrieved
 - hardware random number generator (RNG)
 - remote attestation, etc
What makes a “Trusted OS”

- Extra security features (compared to ordinary OS)
 - E.g., supporting Multi-level Security

- More secure implementation & deployment
 - Apply secure design and coding principles
 - Assurance and certification
 - Code audit or formal verification
 - Maintenance procedures
 - Apply patches, etc.
Sample Features of “Trusted OS”

- Mandatory access control
 - MAC not under user control, precedence over DAC

- Object reuse protection
 - Write over old data when file space is allocated

- Complete mediation
 - Prevent any access that circumvents monitor

- Audit
 - Log security-related events and check logs
Assurance

- Trusted OS = Additional Security Features + Higher level of assurance
- Assurance: “estimate of the likelihood that a system will not fail in some particular way”
- Based on factors such as
 - Software architecture
 - Development process
 - Who developed it
 - Technical assessment
Kernelized Design

- Trusted Computing Base
 - Hardware and software for enforcing security rules
- Reference monitor
 - Part of TCB
 - All system calls go through reference monitor for security checking
 - Most OS not designed this way
Reference Monitor Revisited

• Three required properties for reference monitors in “trusted systems”
 ◦ tamper-proof
 ◦ non-bypassable (complete mediation)
 ◦ small enough to be analyzable
TPM

- Hold private keys for attestation
 - Platform key
 - Type key
- Other key storage
 - For storage management (BitLocker)
- Key generation
- SHA-1
- Public key, HMAC
Attestation

- Of boot:
 - Generate rolling SHA-1 of binaries loaded into memory and provide as a signed value

- Of platform:
 - Provide signed boot sequence + signed nonce with platform/type key
Assurance methods

- Testing
 - Can demonstrate existence of flaw, not absence
- Formal verification
 - Time-consuming, painstaking process
- "Validation"
 - Requirements checking
 - Design and code reviews
 - Sit around table, drink lots of coffee, …
 - Module and system testing
Assurance Criteria

• Criteria are specified to enable evaluation
• Originally motivated by military applications, but now is much wider
• Examples
 ◦ Orange Book (Trusted Computer System Evaluation Criteria)
 ◦ Common Criteria
TCSEC: 1983–1999

- Trusted Computer System Evaluation Criteria
 - Also known as the Orange Book
 - Series that expanded on Orange Book in specific areas was called Rainbow Series
 - Developed by National Computer Security Center, US Dept. of Defense

- Heavily influenced by Bell-LaPadula model and reference monitor concept

- Emphasizes confidentiality
Evaluation Classes C and D

- **Division D: Minimal Protection**
 - D Did not meet requirements of any other class

- **Division C: Discretionary Protection**
 - C1 Discretionary protection; DAC, Identification and Authentication, TCB should be protected from external tampering, …
 - C2 Controlled access protection; object reuse, auditing, more stringent security testing
Division B: Mandatory Protection

- **B1** Labeled security protection; informal security policy model; MAC for named objects; label exported objects; more stringent security testing
- **B2** Structured protection; formal security policy model; MAC for all objects, labeling; trusted path; least privilege; covert channel analysis, configuration management
- **B3** Security domains; full reference validation mechanism; increases trusted path requirements, constrains code development; more DTLS requirements; documentation
Division A: Verification Protection

- A1 Verified design
 - functionally equivalent to B3, require the use of formal methods for assurance; trusted distribution; code, formal top-level specification (FTLS) correspondence
Limitations

- Written for operating systems
 - NCSC introduced “interpretations” for other things such as networks (Trusted Network Interpretation, the Red Book), databases (Trusted Database Interpretation, the Purple or Lavender Book)

- Focuses on BLP
 - Most commercial firms do not need MAC

- Does not address data integrity or availability
 - Critical to commercial firms

- Combine functionality and assurance in a single linear scale
Contributions

- Heightened awareness in commercial sector to computer security needs
- Led to wave of new approaches to evaluation
 - As commercial firms could not use it for their products, some commercial firms began offering certifications
- Basis for several other schemes, such as Federal Criteria, Common Criteria
FUNCTIONALITY VS ASSURANCE

- functionality is multi-dimensional
- assurance has a linear progression
Common Criteria: 1998–Present

- An international standard (ISO/IEC 15408)
- Began in 1998 with signing of Common Criteria Recognition Agreement with 5 signers
 - US, UK, Canada, France, Germany
- In May 2002, 10 more signers
 - Australia, Finland, Greece, Israel, Italy, Netherlands, New Zealand, Norway, Spain, Sweden; India, Japan, Russia, South Korea developing appropriate schemes
- Plus more, Austria, Czech Republic, Denmark, Hungary, etc.
- Standard 15408 of International Standards Organization
- De facto US security evaluation standard, replaces TCSEC
Common Criteria

- Does not provide one list of security features
- Describes a framework where security requirements can be specified, claimed, and evaluated
- Key concepts
 - Target Of Evaluation (TOE): the product or system that is the subject of the evaluation.
 - Protection Profile (PP): a document that identifies security requirements relevant to a user community for a particular purpose.
 - Security Target (ST): a document that identifies the security properties one wants to evaluate against
 - Evaluation Assurance Level (EAL) - a numerical rating (1-7) reflecting the assurance requirements fulfilled during the evaluation.
CC Functional Requirements

- Contains 11 classes of functional requirements
 - Each contains one or more families
 - Elaborate naming and numbering scheme

- Families of Identification and Authentication
 - Authentication Failures, User Attribute Definition, Specification of Secrets, User Authentication, User Identification, and User/Subject Binding
CC Assurance Requirements

- Ten security assurance classes
- Classes:
 - Protection Profile Evaluation
 - Security Target Evaluation
 - Configuration Management
 - Delivery and Operation
 - Development
 - Guidance Documentation
 - Life Cycle
 - Tests
 - Vulnerabilities Assessment
 - Maintenance of Assurance
Protection Profiles (PP)

- “A CC protection profile (PP) is an implementation-independent set of security requirements for a category of products or systems that meet specific consumer needs”
 - Subject to review and certified

- Requirements
 - Functional

- Assurance
 - EAL
Protection Profiles

- Example: Controlled Access PP (CAPP_V1.d)
 - Security functional requirements
 - Authentication, User Data Protection, Prevent Audit Loss
 - Security assurance requirements
 - Security testing, Admin guidance, Life-cycle support, ...
 - Assumes non-hostile and well-managed users
 - Does not consider malicious system developers
Security Targets (ST)

- “A security target (ST) is a set of security requirements and specifications to be used for evaluation of an identified product or system”

- Can be based on a PP or directly taking components from CC

- Describes specific security functions and mechanisms
Evaluation Assurance Levels 1 – 4

- **EAL 1: Functionally Tested**
 - Review of functional and interface specifications
 - Some independent testing

- **EAL 2: Structurally Tested**
 - Analysis of security functions, incl. high-level design
 - Independent testing, review of developer testing

- **EAL 3: Methodically Tested and Checked**
 - Development environment controls

- **EAL 4: Methodically Designed, Tested, Reviewed**
 - Informal spec of security policy, Independent testing
EAL 5: Semiformally Designed and Tested
 ◦ Formal model, modular design
 ◦ Vulnerability search, covert channel analysis

EAL 6: Semiformally Verified Design and Tested
 ◦ Structured development process

EAL 7: Formally Verified Design and Tested
 ◦ Formal presentation of functional specification
 ◦ Product or system design must be simple
 ◦ Independent confirmation of developer tests
Example: Windows 2000, XP, EAL 4+

- Level EAL 4 + Flaw Remediation
 - “EAL 4 … represents the highest level at which products not built specifically to meet the requirements of EAL 5-7 ought to be evaluated.”
 - (EAL 5-7 requires more stringent design and development procedures …)
 - Flaw Remediation: the tracking of security flaws, the identification of corrective actions, and the distribution of corrective action information to customers.

- Catch:
 - Evaluation based on specific configurations specified by the vendor in which the vendor can make certain assumptions about the operating environment and the strength of threats, if any, faced by the product in that environment.
Implications of EALs

- A higher EAL means nothing more, or less, than that the evaluation completed a more stringent set of quality assurance requirements.
- It is often assumed that a system that achieves a higher EAL will provide its security features more reliably, but there is little or no published evidence to support that assumption.
- Anything below EAL4 doesn’t mean much.
- Anything above EAL4 is very difficult for complex systems such as an OS.
- Evaluation is done for environments assumed by vendors.
Highly Evaluated Systems

- **SCOMP (Secure Communications Processor),**
 - evaluated to A1 under TCSEC
- **XTS-400**
 - multi-level secure operating system
 - developed by BAE systems (largest defense contractor in Europe)
 - released in December of 2003
- **Interactive Link**
 - evaluated to EAL7
 - is a suite of hardware and software products to implement network separation
- **Green Hills Integrity**
 - Real-time system evaluated to EAL7
Criticism of CC:

- Evaluation is a costly process (often measured in hundreds of thousands of US dollars) -- and the vendor's return on that investment is not necessarily a more secure product.
- Evaluation focuses primarily on assessing the evaluation documentation, not the product itself.
- The effort and time to prepare evaluation-related documentation is so cumbersome that by the time the work is completed, the product in evaluation is generally obsolete.
- Industry input, including that from organizations such as the Common Criteria Vendor's Forum, generally has little impact on the process as a whole.
Supply Chain

- Where did the components come from?
- Who worked on them?
- Who has had custody of the parts for any length of time?
- Do we know the provenance of all critical components?

- How certain are we?