Dynamic Slicing in the Presence of Unconstrained Pointers*
Technical Report SERC-TR-93-P

Hiralal Agrawal
Richard A. DeMillo
FEugene H. Spafford

Software Engineering Research Center
Department of Computer Sciences
Purdue University

W. Lafayette, IN 479072004
debug@cs.purdue.edu

Abstract

Program slices are useful in debugging. Most work on program slicing to date has concen-
trated on finding slices of programs involving only scalar variables. Pointers and composite
variables do not lend themselves well to static analysis, especially when the language involved
is not strongly-typed. When debugging a program, however, we are interested in analyzing the
program behavior for testcases that reveal a fault. In this paper, we present a uniform approach
to handling pointers and composite variables such as arrays, records, and unions for the purpose
of obtaining dynamic program slices. The dynamic approach proposed works well even when
the language involved allows unconstrained pointers and performs no runtime checks, as in C.

1 Introduction

The notion of program slicing has been discussed extensively in the literature [20, 17, 12, 13, 5].
This discussion, however, has mostly dealt with finding slices for programs involving scalar variables
(see Section 6, Related Work). Slicing would be even more useful in debugging programs that
use complex data-structures involving pointers—when interstatement dependencies are hard to
visualize by manual examination of the source code. Scalar variables are relatively easy to handle
because the memory location that corresponds to a scalar variable is fixed and known at compile
time; it does not vary during the course of program execution. Hence, if one statement modifies
a scalar variable and another statement references a scalar variable, it is easy to determine, at
compile time, if the latter statement references the memory location modified by the former.

The chief difficulty in dealing with an indirect reference through a pointer or an array element
reference! is that the memory location referenced by such an expression cannot, in general, be
determined at compiled time. Further, when such a reference occurs inside a loop, the memory

*This paper appeared as [3].
This research was supported, in part, by a grant from the Software Engineering Research Center at Purdue University,
a National Science Foundation Industry/University Cooperative Research Center (NSF Grant ECD-8913133), and
by National Science Foundation Grant CCR-8910306.

!Not regarding an array as a single unit.

location referenced may vary from one loop iteration to another. The difficulty is compounded
if the language used is not strongly-typed and permits integer arithmetic over pointer variables.
Techniques proposed in [8, 10, 14] may be used to obtain conservative approximations of what a
pointer might point to, but in the presence of unconstrained pointers, as in C, such analysis has only
limited usefulness. In this case we are forced to make the most conservative assumption: an indirect
assignment through a pointer can potentially define any variable. The outcome of this assumption
is that static slices of programs involving pointers tend to be very large; in many instances they
include the whole programs themselves.

Fortunately, while debugging a program we normally have a testcase that reveals the fault and
we wish to analyze the program behavior for that testcase, not for any testcase. Dynamic slices
provide precisely this facility. It is possible to perform precise dynamic interstatement dependence
analysis even when the language is not strongly-typed.

In this paper, we present an approach to obtain dynamic program slices when the language
permits unconstrained pointers. Besides pointers, composite variables such as arrays, records,
and unions are also handled uniformly under this approach. It also allows precise interprocedural
dynamic slicing to be performed. We first present a general framework to obtain static slices in the
presence of pointers and composite variables, and then extend it to the dynamic case. While the
static slicing algorithm assumes that an indirect assignment may potentially modify any variable,
the dynamic slicing algorithm detects exact dependencies.

We have built a prototype debugging tool, named Spyder, that uses the approach described here
to find both static and dynamic program slices [2] for programs written in C. The tool supports
a powerful debugging paradigm involving dynamic slicing [5] and execution backtracking [4] with
the help of which program bugs may be localized quickly.

To see how dynamic slices differ from static slices, consider the program in the main window
panel of Figure 1. It reads a date (month, day, year) and finds the corresponding day-of-the-year
and day-of-the-week. Consider the case when this program is executed for the date January 1, 1990,
i.e., (month=1, day=1, year=1990). Statements in reverse “video” in the figure show the static
slice with respect to date.day_of_the_year at line 88. Figure 2 shows the corresponding dynamic slice.
If day-of-the-year is computed incorrectly for this testcase, the value of date.day must be incorrect.
Thus the error must be inside the procedure read_date invoked on line 50. Clearly, the dynamic
slice in Figure 2 will help us localize the fault much more quickly compared to the static slice in
Figure 1. Figures 1 and 2 are screen dumps of our prototype tool Spyder in operation.

In Section 2, we first present a framework for obtaining static and dynamic program slices when
the program uses only scalar variables. Then in Sections 3 and 4 we extend our framework to
handle pointers and composite variables such as arrays and records for static and dynamic cases,
respectively. Section 5 discusses how our approach may be extended to the interprocedural case.
Finally, Section 6 outlines related work.

2 Background

2.1 Notation

In the following sections we use a let-in construct (adapted from a similar construct in the pro-
gramming language ML [16]). Consider the following generic use of let:

let <declarations> in <expression>

Here, <declarations> consists of a sequence of name bindings that may be used inside <exzpression>.
The scope of these bindings is limited to <exzpression>. The result of evaluating <exzpression>

ful?/fhalve/deno/fast—-day,c

nain{}
£
DateType date;
int month_days_tablel[12]1, day_count_since_eternity, i3

read_date{fdate);

/# conpute the day-table =/
for {i=03 i < 73 i++)
]

nonth_days_tablelil 0
for {i=73 i < 123 i++} % ini s for Hugust Lo Decenber */

nonth_days_table[il = 313

/# check if it is a le

ar, and u

date # of days in February =/
1 ear # 400 == 0}}

else

nonkth_days_tablel[1] = 283

/% conpute day-count since Jan 1, year 1 */
day_count_since_eternity = 365 * {(date.year - 1);
day_count_since_eternity += {date.year - 1} / d;
day_count_since_eternity == {date.year = 1} / 1003
day_count_since_eternity += {date.year - 1} 7/ 4003
day_count_since_eternity += date.day_of _the_year:

/% conpute day-of-week =/
date.day_of _the_week = day_count_since_eternity ¥ 73

/% print day of year */
printf{"day of the year for the date ¥d/¥d/%d is *d.“n", date.month,

date,day, date,year, JGIAJREITET A IRITE Y 3

/% print day of week */
print_day_of _the_week{date.day_of _the_uweek):

(approx. dynamic analysis)(exact dynamic analysis .j

| program slice || data slice || control slice || reaching defs || new tesicase || clear |

| run || stop ||cuntinue|| print || backup || step ||stephack|| delete || quit l_

|> static program slice on “date,day_of _the_year™ at line 388

|

Current Testcase #: 1

Figure 1: Static slice with respect to date.day_of _the_year at line 88.

is returned as the value of the let construct. For example, the following expression evaluates to 5.
leta=2,b=3ina+b

Names may also be bound using “pattern matching” between two sides of the symbol =. For
example, if the complex number X + Y7 is represented by the tuple (X,Y), then the sum of two
complex numbers complex, and complex, may be defined as follows:

sum(complexy, complexy) =
let complexy = (realy, imaginary,), complexy = (realy, imaginarys)

in (realy + realy, imaginary, + tmaginarys)

In the above expression, realy, tmaginary,, realy, and imaginary; were all defined using pattern
matching.

We also use |J notation to denote set unions. For example, if S= {xy, 22, ..., 2,}, then we
have:

ful?/fhalve/deno/fast—-day,c

nain{}
£
DateType date;
int month_days_tablel[12]1, day_count_since_eternity, i3

read_date{fdate);

/% conpute the day-table =/
for {i=03 i < 73 i++}
if {ix2 = 0
nonth_days_tablel[il = 31;
else
nonth_days_table[il = 303
for {i=73 i € 123 i++)

/% init days for January to July =/

/% init days for Hugust to Decenber =/

if {i%2 == 0}
nonth_days_table[il = 303
else

nonth_days_tablel[il = 31;

/# check if it is a leap-year, and update # of days in February #=/
if {{date,year %¥ 4 == (&8 date,year % 100 != 0} |l {date,year ¥ 400 == 0}}
nonth_days_tablel[11 = 293
else
nonth_days_tablel[11 = 283

/% conpute day-of -year =/
for {i = 03
i < date,month - 13
iv+)
date,day_of _the_year += nonth_days_tablelil;

/% conpute day-count since Jan 1, year 1 */
day_count_since_eternity = 365 * {(date.year - 1);

day_count_since_eternity
day_count _since_eternity
day_count_since_eternity

+= {date.year = 1} 7 4;

+=

{date.year = 1} / 1003
{date.year - 1} / 4003

/e

day_count_since_eternity += date.day_of _the_year:

conpute day-of-week =/
date.day_of _the_week = day_count_since_eternity ¥ 73

print day of year =/
printf{"day of the year for the date ¥d/¥d/%d is *d.“n", date.month,

date,day, date,year, JGIAJREITET A IRITE Y 3

print day of week %/
print_day_of _the_week{date.day_of _the_uweek):

I static analysis

B eract ayvamc aaysis_J

)(approx. dynamic analysis

| program slice ||

data slice || control slice || reaching defs || new tesicase || clear |

| run || stop ||cuntinue || print

|| backup || step ||stephack|| delete || quit l_

|> dynanic progran slice on "date.day_of_the_year™ at line

89

Current Testcase #: 1

|

Figure 2: Dynamic slice with respect to date.day_of_the_year at line 89 for the testcase (month=1,

day=1, year=1990).

UxES f(x) = f(wl)Uf($2)U

U f(n)

begin

S1: read(N);
52: 7 = 0;
53: I:=1;
S4: while (I <= N)
do
S5: read(X);
S6: if (X <0)
then
S7: Y = fi(X);
else
S8: Y = fo(X);
end_if;
S9: 7= f3(Z,Y);
S10: I=1+1;
end_while;
S11: write(Z);
end.

Figure 3: An Example Program

(U’s may also be composed together. For example, if S1= {zy, 22} and Sy= {y1, y2}, then we
have:

Uses, Uyes, 9(@,y) = Uxegl g(z,y) = gz, y1) U g(z1, y2) U g(x2, 1) U g(22, ¥2)
YES2

2.2 Simple Static Slicing

The Flow-graph Flow of a program P is a tuple (V, A) where V' is the set of vertices that correspond
to simple statements and predicate expressions in the program (assignments, reads, writes, etc.,
and condition expressions in if-then-else, while-do, etc.)?, and A is the set of directed edges between
vertices in V. If there is an arc from node v; to node v; it means that control can pass from node
v; to node v; during program execution. Each vertex in the flow-graph has a use and a def set
associated with it. The use set of a vertex consists of all variables that are referenced during the
computation associated with the vertex, and the def set consists of the variable computed at the
vertex, if any.

Consider, for example, the program in Figure 3. Symbols fi, f2, and f5, in statements S7,
58, and S9, respectively, are used to denote some unspecified side-effect-free functions with which
we are not presently concerned; only the names of variables used in the computation are relevant.
Labels S1, 52, etc., are included only for reference; they are not part of the program. Figure 4 shows
the flow-graph for this program. Node annotations U and D show use and def sets, respectively,
for all nodes in the flow-graph.

?In program optimization applications, vertices of a flow-graph correspond to basic-blocks in the program. But
for our purposes, it i1s more convenient to associate vertices with simple-statements and predicates.

Figure 4: Flow Graph with use(U) and def(D) sets of the program in Figure 3

Static Reaching Definitions

Given a flow-graph, F, a node, n, in F, and a variable, var, we define SRD(var, n, F), the set
of all reaching definitions of variable var at node n in flow-graph F, to be the set of all those
nodes in F at which var is assigned a value and control can flow from that node to node n without
encountering any redefinitions of var along the control-flow path. More precisely:

SRD(var, n, F) =
let F=(V,A)
in Ugpnyea if var€def(z) then {a}
else SRD(var, z, (V, A—{(z,n)}))
For example, for the flow-graph F in Figure 4, SRD(Z, 11, F) = {2,9}.

Program Dependence Graph

The data dependence graph DataDep of a program P is a pair (V, D), where V' is the same set of
vertices as in the flow-graph of P, and D is the set of edges that reflect data-dependencies between
vertices in V. If there is an edge from vertex v; to vertex v;, it means that the computation
performed at vertex v; directly depends on the value computed at vertex v;.> Or, more precisely:

DataDep(P) =
let Flow(P)=(V, A),
D = Unev {(n,2)}

varEuse(n)

z€SRD (var, n, Flow(P))
in (V, D)

For example, the solid edges in Figure 5 denote data-dependencies among vertices of the flow
graph in Figure 4. As SRD(Z, 11, F) = {2, 9}, there are data dependence edges from node 11 to
nodes 2 and 9 in Figure 5.

? At other places in the literature, particularly that related to vectorizing compilers, e.g., [9], the direction of edges
in dependence graphs is reversed. For the purposes of program slicing, however, our definition is more suitable; as
will become apparent later.

Figure 5: Program dependence graph of the program in Figure 3. Solid edges denote data-
dependencies and dashed edges denote control-dependencies between vertices. Shaded nodes give
the static slice with respect to variable Y at statement 9.

The control dependence graph ControlDep of a program P is a tuple (V, C'), where V' is the same
set of vertices as in the flow-graph of P, and (' is the set of edges that reflect control-dependencies
between vertices in V. If there is an edge from v; to v; in ControlDep, it means that node v; may
or may not be executed depending on the boolean outcome of the predicate expression at node v;.*

For example, the dashed edges in Figure 5 denote the control dependencies among its vertices.
As statements 7 and 8 are immediately nested under the predicate at statement 6, there are control
dependence edges from nodes 7 and 8 to node 6 in Figure 5.

ControlPred(v) denotes the predicate statement upon which node v is control dependent. For
example, for the program dependence graph in Figure 5, we have ControlPred(3) = ¢ whereas
ControlPred(7) = {6}.

The Program dependence graph ProgramDep of a program P is obtained by merging the data
and control dependence graphs of P.> Or,

ProgramDep(P) =
let DataDep(P) = (V, D), ControlDep(P) = (V, (')
in (V, DuC)

For example, Figure 5 shows the program dependence graph of the program in Figure 3.

Static Slice

Given a program, P, a node, n, in its flow-graph, and a variable, var, the static slice of P with
respect to var at node n is constructed as follows: We first find all reaching definitions of var at
node n. Then, from each reaching definition obtained, we find all reachable nodes in the program
dependence graph of the program. StaticSlice(P, var, n) can be precisely defined as follows:

StaticSlice(P, var, n) =

*This definition of control dependence is for programs with structured control flow. For such programs, the control
dependence subgraph essentially reflects the nesting structure of statements in the program, and can be easily built
in a syntax-directed manner. In programs with arbitrary control flow, a control dependence edge from vertex v; to
vertex v; implies that v; is the nearest inverse dominator of v; in the control flow graph of the program [9].

°In other applications like vectorizing compilers, a data dependence graph may include other types of dependence
edges besides data and control dependence, e.g., anti-dependence, output-dependence etc., but for the purposes of
program slicing, the first two suffice.

let 7 = Flow(P), D = ProgramDep(P)
in UpesrD(var, n,) ReachableNodes(x, D)

where ReachableNodes(v, G) is the set of vertices in G that can be reached from v by following one
or more edges in G.

For example, the shaded nodes in Figure 5 give the static slice with respect to variable Y at
statement 9.

2.3 Simple Dynamic Slicing

Let F be the flow-graph of program P. Let test be a testcase consisting of a specific set of input-
values read by the program. We denote the execution history of the program P for test by a
sequence hist = <wy, v, ..., v,> of vertices in F appended in the order in which they are visited
during the program execution. The execution history at any instance denotes the partial program
execution until that instance.

Consider, for example, the program in Figure 3 and testcase (N = 2, X = —4,3). The
execution history of the program for this testcase is <1, 2, 3, 4%, 51, 61, 7, 9%, 10, 42, 52, 62, 8, 92,
102, 43, 11>. Note that we use superscripts 1, 2, etc., to distinguish between multiple occurrences
of the same statement in the execution history.

Last(hist) denotes the last node in hist, and Prev(hist) denotes the subsequence with all but
the last node in hist. That is,

Last(<vy, ..., o1, 0,>) = vy
Prev(<vg, .oy Upe1, 05>) = <UL, «voy Upoq>

We use the notation <Prev(hist) | Last(hist)> to denote the two parts of hist. Also, <>
denotes the empty sequence.

Also, LastOccur(v, hist) denotes the last occurrence of the node v in hist. For example, Las-
tOccur(9, <1, 2, 3, 4%, 51, 61, 7,91, 101, 42, 52, 62, 8, 92, 10%, 4%, 11>) = {9%}.

Dynamic Reaching Definitions

DRD(var, hist) denotes the last occurrence of the node in hist that assigns a value to var. Or,

DRD(var, <>) = ¢

DRD(var, <prevhist | lastnode>) =
if varedef(lastnode) then {lastnode}
else DRD(var, prevhist)

For example, DRD(Y, <1, 2, 3, 41, 51, 61, 7,91, 10!, 42, 5262, 8, 92, 102, 4%, 11>) = {8}.
Note that both LastOccur and DRD result in either the empty set, implying no occurrence of
the desired node, or in a singleton consisting of a unique node.

Dynamic Dependence Graph

The dynamic dependence graph, DynamicDep, of an execution history hist is a tuple (V', A), where
V is the multi-set of flow-graph vertices (i.e., multiple entries of the same element are treated as
distinct), and A is the set of edges denoting dynamic data dependencies and control dependencies
between vertices. We use the symbol ¥ to denote disjunctive union of elements. DynamicDep is
defined as follows:

Figure 6: Dynamic dependence graph of the program in Figure 3 for testcase (N = 2, X = —4,
3). Solid edges denote data-dependencies and dashed edges denote control-dependencies between
vertices. Shaded nodes give the dynamic slice with respect to variable Y at the end of program
execution.

DynamicDep(<>) = (¢, ¢)
DynamicDep(<prevhist | next>) =
let DynamicDep(prevhist) = (V, A),

D= UvarEuse(nem‘) {(next, $)},
z€DRD (var, prevhist)

C = Uxe ControlPred(next) {(next, y)}
y€LastOccur(z, prevhist)

in (Vw{nexzt}, AUDUC)

Consider again the program in Figure 3, and the same testcase (N = 2, X = —4, 3). Figure 6
shows the corresponding dynamic dependence graph. Notice the two occurrences of node 9. The
first occurrence depends on nodes 2 and 7 for values of variables Z and Y, respectively, whereas the
second occurrence depends on its first occurrence and node 8 for the same values, respectively.

Dynamic Slice

Given an execution history, hist, of a program, P, on a test-case, test, and a variable, var, the
dynamic slice of P with respect to hist and var is the set of all statements in hist whose execution
had some effect on the value of var as observed at the end of the execution. Note that unlike
static slicing where a slice is defined with respect to a given location in the program, we define
dynamic slicing with respect to the end of execution history. If a dynamic slice with respect to
some intermediate point in the execution is desired, then we simply need to consider the partial
execution history up to that point.

Once we have constructed the dynamic dependence graph for the given execution history, we
can easily obtain the dynamic slice for a variable, var, by first finding the node that corresponds to
the last definition of var in the execution history, and then finding all nodes in the graph reachable
from that node. DynamicSlice can be defined precisely as follows:

DynamicSlice(hist, var) = Uyeprp(yReachableNodes(x, DynamicDep(hist))

var, hist

For example, the shaded nodes in Figure 6 give the dynamic slice for variable Y at the end of the
execution for the testcase (N = 2, X = —4, 3).

3 Static Slicing with Pointers and Composite Variables

In Section 2.2, we defined reaching definitions for scalar variables. A definition of a variable var at
a statement 57 reaches its use at statement 99, if there is a path from 57 to S5 in the flow-graph
of the program, and no other node along the path defines var. But what if 57 defines an array
element A[i], and S5 uses an array element A[j]; if Sy defines a field of a record s.f, and S5 uses
the whole record s; or if 57 defines a variable X, and 55 uses a pointer dereference expression #p?
To be able to handle such situations, we introduce below the notion of intersection of two l-valued
expressions.

Intersection of L-valued Expressions

An expression is said to be an l-valued expression if a memory location can be associated with it.
A simple check to find if an expression is an l-valued expression is to check if it can appear on the
left hand side of an assignment statement. For example, expressions var, A[i], s.f, B[i].r.a, xp,
are all l-valued expressions. On the other hand, none of the expressions 103, x + y, and a > b,
is l-valued. The presence of pointers and composite variables such as arrays and records in a
programming language requires that both use and def sets of statements be defined in terms of
l-valued expressions.

A use expression ey is said to intersect with a def expression e, if the memory location asso-
clated with e; may overlap with that associated with e;. We identify three types of intersections
between l-valued expressions: complete intersection, maybe intersection, and partial intersection.
We informally describe these below; see [1] for precise definitions.

Complete Intersection

A use expression e; completely intersects a def expression ey if the memory location associated
with e is totally contained in that associated with e;. For example, consider the following code
fragment:

S1: X:=...

S2: =...X ...

Here, use of variable X at 52 completely intersects its definition at S1. Also, in the following code
fragment,

S1: s 1= ...
52: = ...s
use of field s.f at 52 completely intersects the definition of record s at S1.

Maybe Intersection

Consider the following situation:

S1: Ali] = ...

S2: :A[J]

10

Whether or not the use of A[j] at S2 intersects with the definition of A[:] at S1 depends on the
actual values of variables ¢ and j at statements S1 and S2, respectively. If their values are the
same, the two expressions intersect, otherwise they do not. We refer to such intersections as maybe
intersections. Use of pointer dereferencing also causes maybe intersections. In the following code
fragment,

S1: pi= ...

S2: =...X ...

use of variable X at S2 maybe-intersects with the definition at S1 because the pointer variable p
may or may not be pointing at variable X.

Partial Intersection

Consider the following scenario:

S1: sfi:= ...

S2: = ...5...

The whole record s is used at S2, but only one of its fields is defined at S1. A similar situation
occurs if an array is used at S2, and only one of its elements is defined at S1. We refer to such
intersections as partial intersections. If a use expression e partially intersects with a def expression
e, we define PreFap(eq, e2) to be the portion of the memory location associated with e; that lies
before that associated with e;. Similarly we define PostFxp(e1, €3) to be the portion of the memory
location associated with e; that lies after that associated with es.

Static Reaching Definitions Revisited

Let Completelntersect, Maybelntersect, and Partiallntersect be boolean functions that determine
if two l-valued expressions have complete, maybe, or partial intersections, respectively. We can now
extend our definition of SRD, defined in Section 2.2 for programs involving only scalar variables,
to that involving pointers and composite variables.

SRD(var, n, F) =
let F=(V,A)
in Umyen if def(z) = ¢
then SRD(var, z, (V, A—{(z,n)}))
else let def(x) = {var'}, A= A—{(a,n)}
in if Completelntersect(var, var')
then {x}
else if Maybelntersect(var, var')
then {z} U SRD(var, x, (V, A"))
else if Partiallntersect(var, var')
then {z} U SRD(Prelzp(var, var'), z, (V, A"))
U SRD(PostExp(var, var'), z, (V, A"))
else SRD(var, x, (V, A"))

11

Note that maybe and partial intersections may occur together. For example, consider the following
situation:

12

S1: Afilf:= ...

S2: : A

Because we check for maybe intersection before partial intersection, the former takes precedence
over the latter whenever they occur together.

The definitions of data dependence, control dependence, and a static slice remain the same as
given in Section 2.2. Only we now use the new definition of static reaching definitions described
above to find the data dependence edges of the program dependence graph.

4 Dynamic Slicing with Pointers and Composite Variables

Dynamic slicing differs from static slicing in that the former has no maybe intersections. This
implies that for each use of a scalar variable, there is at most one dynamic reaching definition;
and for each use of a composite variable, there is at most one dynamic reaching definition of
each of its scalar components. To define dynamic slices in the presence of composite variables
and pointers, we generalize the notion of an l-valued expression to that of a memory cell. A
memory cell is a tuple (adr, len) where adr represents its address in memory, and len represents
its length in bytes.® The memory-cell corresponding to an l-valued expression e; is given by the
tuple (AddressOf(eq), SizeOf (e1)), where AddressOf (exp) gives the current address associated with
the I-valued expression ezp at runtime, and SizeOf (exp) gives the number of bytes required to store
the value of exp. We now define use and def sets of all simple statements and predicates in terms of
memory cells instead of I-valued expressions. Though the length component of these memory-cells
may be determined at compile time, the address components may have to be determined at runtime
just before the corresponding simple statement or predicate is executed.

Also, instead of determining intersection of l-valued expressions, we now check if two memory
cells intersect. Using this formulation, we redefine DRD function as follows:

DRD(cell, <>) = ¢
DRD((adr, 0), hist) = ¢
DRD(cell, hist) =
let hist = <prevhist | next>
in if def(next) = ¢
then DRD(cell, prevhist)
else let def (next) = {cell’}
in if Celllntersect(cell, cell’)
then {next} U DRD(PreCell(cell, cell’), prevhist)
U DRD(PostCell(cell, cell’), prevhist)
else DRD(cell, prevhist)

Celllntersect(useCell, defCell) returns true if there is any overlap between the two cells. PreCell
and PostCell return the non-overlapping portions of the wuseCell that lie before and after the
overlapping portion, respectively. It is possible that one or both of these portions may be empty

50r the smallest addressable unit on the computer, e.g. a word. For languages where memory allocation for
a variable is not necessarily contiguous, definition of a memory-cell may be changed to include the set of all its
contiguous sub-cells.

13

ful?/halve/denodpir . c

nain{}
f
int al101, i, j, k, *p, *q, =r;

al0]
alll
al2]
al3]
ald]
albl
alBl
al7]

1
2
3
q
L
b
7
8
9

mmummn!mn—\o
IR TETY -+ LN

jr k, (0 <= i,j.k < 10¥; ");
j, Bkl

-}9 printf{"al¥d] = #d, al%d] = %d, al¥%d] = ¥dwn", i, alil, j, W0, k., alkl}:
3

static analysis)(approx. dynamic analysis)W

| program slice || data slice || control slice || reaching defs || new testcase || clear |

| run || stop || continue || print || backup || step ||stephack || delete || quit L
|) dynanic progran slice on “aljl1" at line 29 -

|W Current Testcase #: 1

Figure 7: Dynamic slice with respect to a[j] on line 29.

(len = 0). The case when both pre- and post-cells are empty is analogous to complete intersection
in static slicing; the case when one or both are non-empty is analogous to partial intersection; and,
as we mentioned earlier, there are no maybe intersections in the dynamic case.

The advantage of this formulation is that all the usual problems associated with handling
pointers in the static case are automatically taken care of in the dynamic case because all use
and def sets are resolved in terms of memory cells; there is no ambiguity in determining if two
memory cells overlap. As in static slicing, the definitions of data dependence, control dependence,
and dynamic slice remain the same as given in Section 2.3. Only the definition of dynamic reaching
definitions has changed.

Consider, for example, the simple program in Figure 7. It initializes the array a, reads three
values i, j, and k, and increments the ith, jth and kth elements of the array, accessing these elements
indirectly via pointers p, q, and r, respectively. The figure also shows the dynamic slice with respect
to a[j] on line 29, for the testcase (i = 1, j = 3, k = 3). The static slice would have included the
whole program.

Figure 8 shows a variant of the above program where a loop is used to initialize the array
instead of using a separate assignment for each array element. If we execute this program for the
same testcase (i = 1, j = 3, k = 3), we get the following output: a[l] = 2, a[3] = 4, a[1l0] = 0.
Instead of printing the value of a[3] it prints that of a[10]. This implies that the value of k somehow
got corrupted during the program execution. If we obtain the dynamic slice of k on line 27, we
would expect only line 8 to be in the slice as that is the only place in the program where k is
modified. Instead, we find that the loop on lines 10-17 is included in the dynamic slice, as shown in
Figure 8. This suggests that the variable k was clobbered during the execution of the loop. Further

14

/Jul?/ha/v2/denos/bugptr,c =
1 nain(}
2
3 £
4
5 int i, j, k, al81, 1, =p, *q, %r3
b
7 printf{"Enter i, j, k, (0 <= i,j.,k < 10}: "}
g scanf("#d #d #d", 8i, &j, 8k):
9
10
11
12
13
14
15
16
17
18
19 p = 8alil;
20 = Bal jls
21 L=l
22
23 #p += 13
24 *q += 1%
25 EETEET
26
27 -}9 printf{"al¥d] = ¥d, al¥d] = %d, al¥d] = ¥d\n", i, alil, j, alj1, B, alkl}:
28
29 H
30
3
G TS QT T YTR] oot oy anayss]
[program siice]| datasiice || control slice || reaching defs || new testcase || clear |
| rn || stop || continue || print || hackup || step ||stephax:k || delete || quit. L
|) dynanic program slice on "k" at line 27 -
Current Testcasze #: 1

Figure 8: Dynamic slice with respect to k on line 27.

examination reveals that the fault indeed lies with the loop predicate: it iterates ten times when
the array is declared to be only eight elements long. It is situations like this where precise dynamic
analysis in terms of memory cells is helpful in revealing the fault.

5 Interprocedural Dynamic Slicing

The dynamic slicing approach described above can be easily extended to obtain slices of programs
with procedures and functions. We first consider the case when parameters are passed by value, as in
C. In this case, we simply need to treat a procedure invocation, proc(actualy, actuals, . .. actual,),
to be a sequence of assignments formal;, = actual;,1 < ¢ < n, where formal; is the tth formal
parameter of proc. The use set of each of these assignments is computed in terms of memory-cells
just before the procedure is invoked, and the def set is computed just after the control enters the
procedure. Memory cells that correspond to def sets belong to the current activation record of
proc on the stack.

Figure 9 includes a variant of the program in Figure 2 where segments of code in the main
program have been moved inside procedures. Figure 9 also shows the interprocedural dynamic slice
with respect to date.day_of_the_year on line 91 for the same testcase used for the dynamic slice in
Figure 2.

Note that unlike interprocedural static slicing [12], our approach for dynamic slicing does not
require that we determine which global variables are referenced inside a procedure, or which vari-
ables may be aliases to each other, nor do we need to eliminate name conflicts among variables in
different procedures.

15

ful?/ha/v2/deno/new-day,c
nonth_days_tablelil = 313

if ({year ¥ 4 == 0 88 year % 100 != 0} |l {year ¥ 400 == 0}}
nonth_days_tablel[11 = 293
else
nonth_days_tablel[1]l = 283
3

void read_date{pDate}
DateType #pDate;

printf ("Enter nonth, day, year (seperated by spaces): “}:

gcanf ("#d ¥d ¥d“, BpDate->wonth, $plate->day, Bplate->year):

void conpute_day_of _the_year{nonth_days_table, pDate}
int nonth_days_tablel1:
DateType *pDate;

int i3
phate->day_of _the_year = plate->day;

for (i = 03 i < pDate=>month = 13 i++}
pDate=>day_of _the_year += month_days_table[il:

H

void conpute_day_count_since_eternity{pDate, pCount}
DateType =pDate;
int *pCount.3

#pLount = 365 = {pDate->year - 1);

#pCLount += {pDate->year - 1} / 43

#pLount. == {pDate->year - 1} / 1003

#pLount. += {pDate->year - 1} / 4003

#pLount += pDate=->day_of_the_year:
3

nain{}

read_date{fdatel:

conpute_nonth_days{nonth_days_table, date.year);

conpute_day_count_since_eternity{fdate, &#day_count_since_eternityl;
date.day_of _the_week = day_count_since_eternity % 73

-.9 printf{“day of the year for the date ¥d/%d/%d is *d.\n", date.nonth,

date.day, date.year, TETHIRETICIATMIEET) ;
print_day_of _the_vweek{date.day_of _the_uweek):

H
I static analysis)(approx. dynamic analysis)W

| program slice || data slice || control slice || reaching defs || new tesicase || clear |
| run || stop || continue || print || backup || step ||stephack|| delete || guit l_
FQ) dynanic progran slice on "date,day.of _the_year” at line 91

|

Current Testcase #: 1

Figure 9: Dynamic slice with respect to date.day_of_the_year at line 91 for the testcase (month=1,
day=1, year=1990).

Call-by-reference is even easier to handle: no initial assignments to formal parameters need to
be made. The address of a formal parameter variable is automatically resolved to that of the cor-
responding actual parameter. Call-by-result parameter passing is handled by making assignments,
actual; = formal;, just before control returns to the calling procedure. Call-by-value-result can
be handled similarly by making appropriate assignments both at the beginning and the end of the
procedure.

6 Related Work

The concept of static program slicing was first proposed by Weiser [19, 20]. Ottenstein and Otten-
stein later presented an algorithm in terms of graph reachability in the program dependence graph,
but they only considered the intraprocedural case [17]. Horwitz, Reps, and Binkley extended the
program dependence graph representation to what they call the “system dependence graph” to

16

find interprocedural static slices under the same graph-reachability framework [12]. Bergeretti and
Carré have also defined information-flow relations somewhat similar to data- and control depen-
dence relations, that can be used to obtain static program slices (referred to as “partial statements”
by them) [7]. Podgurski and Clark have extended the regular notion of control dependence (which
they refer to as “strong control dependence”) to “weak control dependence” that includes inter-
statement dependencies involving program nontermination [18]. Uses of program slicing have also
been suggested in many other applications, e.g., program verification, testing, maintenance, au-
tomatic parallelization of program execution, and automatic integration of program versions (see,
e.g., [20, 7, 11]).

Korel and Laski extended Weiser’s static slicing algorithms for the dynamic case [13]. Their
definition requires that if any one occurrence of a statement in the execution history is included in
the slice then all other occurrences of that statement be automatically included in the slice. For
example, if the program in Figure 3 is executed for the testcase (N = 2, X = —4, 3), and we find
the dynamic slice for the variable Y at statement S9 during the second iteration, their definition
will require that statement S7 be also included in the dynamic slice, even though the current value
of Y is totally unaffected by its execution. Miller and Choi also use dynamic dependence graph to
perform flow-back analysis [6] in their Parallel Program Debugger PpD [15]. These approaches also
treat array elements as separate variables. But as they do not resolve use and def sets in terms of
memory cells, they will fail to detect interstatement dependencies like that illustrated in Figure 8.
Also our approach provides a uniform way to handling pointers and all types of composite variables.

7 Conclusions

Static program slices tend to be large and imprecise when the program being debugged involves
pointers and composite variables such as arrays, records, and unions. They lose their usefulness
altogether if the language involved is not strongly-typed and permits use of unconstrained pointers.
While debugging, however, we normally have a concrete testcase that reveals the fault and we wish
to analyze the program behavior for that particular testcase. Dynamic program slices help us find
interstatement dependencies for a given testcase. In this paper we have shown that we can find
accurate dynamic slices even in the presence of unconstrained pointers and composite variables.
The approach outlined provides a uniform framework for handling pointers as well as various types
of composite variables. It does not require that the language be strongly-typed or that any runtime
checks (out-of-bound array element reference, illegal pointer dereference, etc.) be performed.

Acknowledgments

We would like to thank Michal Young for our discussions with him on notations used in this paper
and helping us write IATpX macros for generating them.

References

[1] Hiralal Agrawal. Towards Automatic Debugging of Computer Programs. PhD thesis, Depart-
ment of Computer Sciences, Purdue University, West Lafayette, IN, 1991.

[2] Hiralal Agrawal, Richard A. DeMillo, and Fugene H. Spafford. Efficient debugging with slicing
and backtracking. Technical Report SERC-TR-80-P, Software Engineering Research Center,
Purdue University, West Lafayette, IN, 1990.

17

[3]

[4]

[5]

Hiralal Agrawal, Richard A. DeMillo, and Fugene H. Spafford. Dynamic slicing in the presence
of unconstrained pointers. In Proceedings of the Fourth Symposium on Testing, Analysis and
Verification (TAV/). ACM/IEEE-CS, October 1991. Also issued as SERC Technical Report
SERC-TR-93-P.

Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. An execution backtracking
approach to program debugging. IEFFE Software, pages 21-26, May 1991.

Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings of the SIG-
PLAN’90 Conference on Programming Language Design and Implementation, White Plains,
New York, June 1990. ACM SIGPLAN. SIGPLAN Notices, 25(6):246-256, June 1990.

R. M. Balzer. Exdams: Extendible debugging and monitoring system. In A FIPS Proceedings,
Spring Joint Computer Conference, volume 34, pages 567-580, Montvale, New Jersey, 1969.
AFIPS Press.

Jean-Francois Bergeretti and Bernard A. Carré. Information-flow and data-flow analysis of
while programs. ACM Transactions on Programming Languages and Systems, 7(1):37-61,
January 1985.

David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and struc-
tures. In Proceedings of the SIGPLAN’90 Conference on Programming Language Design and
Implementation, White Plains, New York, June 1990. ACM SIGPLAN. SIGPLAN Notices,
25(6):296-310, June 1990.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph

and its uses in optimization. ACM Transactions on Programming Languages and Systems,
9(3):319-349, July 1987.

Susan Horwitz, Phil Pfeiffer, and Thomas Reps. Dependence analysis for pointer variables.
In Proceedings of the SIGPLAN’89 Conference on Programming Language Design and Imple-
mentation, Portland, OR, June 1989. ACM SIGPLAN. SIGPLAN Notices, 24(7):28-40, July
1989.

Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninterfering versions of programs.
ACM Transactions on Programming Languages and Systems, 11(3):345-387, July 1989.

Susan Horwitz, Thomas Reps, and David Binkeley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26-60, January
1990.

Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Processing Letters,
29:155-163, October 1988.

J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses. In Proceedings
of the SIGPLAN’88 Conference on Programming Language Design and Implementation. ACM
SIGPLAN, July 1988. SIGPLAN Notices, 23(7):21-34, July 1988.

Barton P. Miller and Jong-Deok Choi. A mechanism for efficient debugging of parallel pro-
grams. In Proceedings of the SIGPLAN’88 Conference on Programming Language Design and
Implementation, Atlanta, GA, June 1988. ACM SIGPLAN. SIGPLAN Notices, 23(7):135-144,
July 1988.

18

[16] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT
Press, Cambridge, MA, 1990.

[17] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a soft-
ware development environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Sympo-
sium on Practical Software Development Environments, Pittaburgh, PA, April 1984. ACM
SIGSOFT/SIGPLAN. SIGPLAN Notices, 19(5):177-184, May 1984.

[18] Andy Podgurski and Lori A. Clarke. A formal model of program dependences and its im-
plications for software testing, debugging, and maintenance. IFFE Transactions on Software
FEngineering, 16(9):965-979, September 1990.

[19] Mark Weiser. Programmers use slices when debugging. Communications of the ACM,
25(7):446-452, July 1982.

[20] Mark Weiser. Program slicing. IFEFE Transactions on Software Engineering, SE-10(4):352-357,
July 1984.

19

