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Abstract

A debugging oracle is a decision maker during a debugging process. Three major
decisions during typical debugging sessions are on the identities, the locations, and
the repairs of faults. A programmer usually acts as a debugging oracle. Our
research objective is to help him in his decision-making process with a debugging
oracle assistant.

To enhance our understanding of both the debugging oracle and the debugging
oracle assistant, we studied how 14 expert programmers debug a C program with
over 4300 executable lines of code including real faults of omission. Four different
forms of debugging oracle assistance were tested. The outcome of the studies
provides insight to programmers’ needs and the forms of assistants which fulfill
them.

We find that information alone does not improve debugging performance. The
two assistants that helped programmers make more accurate decisions on faults
observed when programmers needed help and provided unsolicited and customized
assistance for each programmer. This customized assistance came in the form of
hints, questions, confirmation, and/or explanation.

Our preliminary results are supported by research on Decision Support System
(DSS) and Critic systems. The problems with debugging assistants we identified
match the problems identified for DSS. The desirable features to improve DSSs
match the desirable features of debugging oracle assistants. Because these features
are also the characteristics of Critic systems, we have reason to believe that a
desirable debugging oracle assistant is a debugging critic.
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1 Introduction

Debugging, a process of locating and fixing program faults, is one of the most
serious bottlenecks in software development today [Agr91]. Program faults are
physical evidence of errors; errors are inappropriate actions made during software
development that may ultimately cause software to fail [IEE83]. Program testing
is a conventional means of recognizing the presence of faults.

Our goal is to improve the decision-making process during debugging to reduce
programmer debugging time and improve accuracy. We refer to the decision maker
in a debugging process as a debugging oracle. Though three major decisions in
debugging are on the identity, the location, and the repair of faults, we previously
placed emphasis on supporting decisions on fault locations only [SV92].

In [SV92], we originally decided that adebugging oracle assistantshould support
two intermediate decisions within fault localization strategies (e.g., as in [Sha83,
PS93]). They are the decisions on correctness of program parts or program states
(e.g., data values). We proposed to find the information that helps programmers
decide on correctness in the absence of a formal program specification.

The debate on whether our proposed role of a debugging oracle assistant is
adequate to improve the debugging time and accuracy prompted us to conduct pilot
studies. We tested four different assistants and used statistical analysis to suggest
whether the assistant improved debugging performance. Though our findings did
not match our expectations, they match the findings in the area of Decision Support
Systems and Critic systems. As a result, we have revised the roles of a debugging
oracle assistant and redefined our research hypothesis.

This paper covers, in chronological order, our hypotheses, studies, analyses,
and findings of our pilot studies. After we summarize our findings, we describe
evidence that supports our results from research in decision support systems and
critic systems. In the conclusion, we suggest a list of possible directions to pursue
in debugging research.

1.1 The Objective of the Study

The objective is to test whether our original research hypothesis is worth pursuing.
Our original hypothesis wasthe presence of appropriate information helps program-
mers judge the correctness status of hypothesized fault locations or program states
significantly faster or more accurately. We wanted to conduct studies to see:

1. how many times programmers asked for help on the above two tasks,

2. whether the high demand on both tasks are related to improved debugging
performance, and

3. whether information alone can assist these tasks.

If we found evidence against these three, we hoped that the results of the studies
would point out other desirable features for a debugging oracle assistant that are
worth pursuing.

1.2 Initial Plan of Study

Instead of studying how novice programmers debug a toy-size program with seeded
faults, we want to study how a debugging oracle assistant helps expert program-
mers debug a large program with real faults. Because we do not yet know what
information can help, we need an assistant that can provide practically any infor-
mation about the program.

3



The debugging oracle assistant that qualifies is the debugging oracle of the
program. This is the person who wrote or maintains the program and can answer
almost any question about it.

The program we used is Nu, a locally-developed Unix system administrator
program for maintaining a user database. Nu is a screen-oriented program for
adding new users, deleting old users and modifying information about existing
users on departmental hosts. Information is maintained for all hosts, including
diskless clients.

Nu’s C source code consists of one header file and 16 source files. Version 1 of
Nu has 6795 lines – 4320 of which are executable. Version 2 of Nu has 6771 lines –
4303 of which are executable. Blank lines constitute 12.6% of total lines. Comment
lines constitute 6.9% of the non-blank lines. Approximately 17.6% of the non-blank
lines use #define’s values. Nu consists of 167 routines with an average length of 40
non-blank lines. The average identifier is 8.9 characters long. It uses 18 goto’s (13
of them are in the mail.c file), 261 unique operators, and 1460 unique operands.
Nu maintains five database files that amount to approximately 1600 lines of data.

Two faults under study are faults of omission. For fault 1, a data definition
is missing. During the start up phase, the pointer pde is not defined when one
of the fields in the chfnadd file is blank. The reference to this undefined variable
causes the program to dump core. For fault 2, a data handling task is missing.
The pointer Home dir list ! pde is left pointing to a copy of a password database
entry. Because it does not get reset to the original entry before the program frees
the copy, the same space is written over. Ultimately, the program produces the
wrong output. Figure 1 describes the characteristics of both faults in more detail.

One error-revealing test case per fault is given. For fault 1, the error-
revealing data is in the 4-line file, chfnadd. Chfnadd contains finger information
and password changes. Its format is as follows:

uid:optional_new_passwd:option_new_GECOS:time_of_change:

The empty GECOS field in the first line of chfnadd, “105:::714362704:”, causes
Nu to dump core. This file format is not given to the programmers.

For fault 2, the error-revealing test data comes from an interactive session of
Nu which adds new home directories for multiple users. A sample test data (in the
README file) contains two transactions. They are as follows:

^F trinkle RETURN ^E ^ E ah escher RETURN /u/u35 RETURN ^T ^ T ^F

norman RETURN ^E ^E ah arthur RETURN /u/u1 RETURN ^T ^ T ^ T

The ^ represents a control key. The ^F is a request to find the specified user.
The first ^E is a request for editing the entry. The second ^E is a request for
editing the home map entry. The ah is a request for adding a host specific entry.
The first ^T saves the map entry. The second ^T saves the user entry. After all
transactions the last^T saves all the changes and exits nu. The erroneous output
is as follows:

/usr/ucb/rsh arthur ./install /u/u1 norman 147 147
/usr/ucb/rsh escher ./install /u/u35 norman 147 147
/var/amd/updatemaps
Saving database ... done

The correct output should have listed trinkle 143 143 in the second line instead
of norman 147 147.

The programmers must satisfy six requirements to be considered expert pro-
grammers for our studies. First, they must have at least six years of programming
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experience. Second, they must have known C for at least five years. Third, they
must have spent at least three years in the graduate school in the Computer Sci-
ence department at Purdue University. Fourth, they must have taken at least
three classes that used C language. Fifth, they must have coded C programs larger
than one thousand lines before. Sixth, they must know how to use dbx.

The working environmentrequires the programmers to run Nu under SunOS
version 4 in the X window environment. They can use only one debugger, dbx.

The materials given to the programmers include the source code listing of nu,
nu’s data files, a README file, and an instruction sheet. Our README file lists
the purpose of the data files, the nature of program failure, and one error-revealing
test case. Our Makefile is set up to compile the program in DEBUG mode. Lastly,
our instruction sheet explains how to obtain these materials on-line. It also covers
extra instructions for the programmers to report their progress.

The monitoring process monitors the accuracy, the time, the debugging pro-
cess, and the oracle-programmer interaction. To monitor the accuracy, we asked
the programmers to answer our AboutBug questionnaire at the end of each hour.
The questionnaire asks (1) where they suspect the fault is, (2) where they think the
fault cannot possibly be, (3) what the fault is, and (4) how the fault can be fixed.
The answer to the first two questions must be as specific as possible: by file names,
routine names, and line numbers. They must be mutually exclusive. Anything else
falls into a region where programmers may look if they cannot find the bug in the
suspected region. The answer to the third question is either the description of the
fault or types of faults they suspect. The answer to the fourth question is either
“do not know yet” or the code with correction.

To monitor the time and the debugging progress, we use script, tcsh, and RCS.
The tcsh is a C shell that monitors the time of day that the commands were used.
The history command in tcsh reports both the previous commands and their time
stamps. RCS (Revision Control System) monitors changes made to the source code.
The Makefile hides this operation from the programmers by automatically checking
the modified files in and out of the RCS directory.

To monitor the oracle-programmer interactions, we taped their conversations.
Our tape recorder also records the time of the conversation.

The debugging performance measurements we used include (1) the actual
time (TIME), (2) the estimated time taken to fix the fault (ETIME), (3) the debugging
speed (SPEED), (4) the accuracy (AC), and (5) the average accuracy in locating
the fault (AACLOC). AC is calculated based on the accuracy in locating the fault
(ACLOC), in identifying the fault (ACID), and in fixing the fault (ACFIX). AACLOC
is the average of ACLOC at the end of each hour. Appendix B lists the definitions
of these measurements.

The statistical analysis we used to interpret the results are Analysis of Vari-
ance (ANOVA) and contrast analysis. ANOVA helps us identify causes of variations
in the debugging performance by testing the differences in the means of a measure-
ment among two or more groups of experimental subjects. Contrast analysis helps
us compare different groups of programmers.

For each performance measurement, the null hypothesis would claim that a
given factor causes no variation in that measurement. The alternative hypothesis
claims that it does. Two factors involved here are the faults and the assistant.
Either factor or their combination can cause the variation. If the combination is
the cause, the effectiveness of the assistant depends on the types of faults.

We consider the variation in the measurement significant if the p-value in the
ANOVA result falls below our type I error-estimate (�) of 5%. To make this claim,
we need an adequate sample size for the measurement under test. We consider our
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sample size adequate if the power of the test (1� �) is more than 90%.1 A small
sample size can still yield a high power of test if the variation of the measurement
within the group is very small, but variation between the groups is very large.

2 Pilot Study 1

In this study, the assistant is the oracle of the program under test. Our oracle is
the Unix system administrator who maintains the program Nu. He can answer
any questions from the programmers except “What is the fault?”, “Where is the
fault?”, and “How can it be fixed?”. We nevertheless refer to this feature as the
all-you-can-ask feature.

2.1 The Study

We studied the programmers’ abilities to find and fix the fault. This study compared
groups of programmers with and without oracle access. Eight programmers who
participated were called S1 to S8. We randomly assigned two programmers to each
fault-assistant combination. S1, S2, S3, and S4 worked with fault 1; S5, S6, S7, and
S8 worked with fault 2. Only S3, S4, S7, and S8 had oracle access. Variations among
these programmers appear in Appendix A.

To prevent any eavesdropping, the oracle was in the room next to the program-
mers’ room. Programmers with oracle access worked in different rooms from those
without the access. We observed them to make sure they did not interact.

2.2 The Results

ANOVA suggests that the fault, not the Nu’s oracle assistant, causes significant
variations in all five measurements.2 The p-values for AC, AACLOC, TIME,
ETIME, and SPEED are 0.045, 0.014, 0.029, 0.038, and 0.034, respectively.

All programmers who debugged fault 1, exceptS2, found the correct fix in about
two hours. Though S2 located the faulty routine the fastest, he settled for the fix
that had a side-effect. Only one programmer, S7, found the correct fix for fault 2.
With oracle access, S7 took about 31

2 hours. S5 and S6, who received no assistance,
arrived at the fixes with side-effects in about 2-21

2 hours. S8, who had oracle
access, could not identify and could not fix the fault. He did locate the faulty
routine, however. The performance comparison is shown in Appendix C.

2.3 The Findings

This study provided evidence against rather than for our original hypothesis. We
observed few demands for verifying fault locations and program states. The pro-
grammer who made the most requests to confirm fault locations, ironically, could
not fix fault 2. We could not tell, however, whether information alone helped the

1The � denotes a type II error-estimate.
2Note that the results “suggest” instead of “conclude.” The reason is not just because our sample size

was inadequate to support the claim that the fault causes the differences. Our small sample size bars us
from testing two of the three ANOVA assumptions. The first assumption that required the experiment to
be repeatable is met. The other two are the homogeneity of error variances and the normal distribution
of the population from which the samples are drawn. As we have to assume that they are true, we have
to exercise caution before we make inferences from the results. Despite this drawback, suggestions with
statistical analysis backup are still better than guessing.
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programmers, mainly because they asked very few questions. S3 and S4 each
asked only 2-3 questions. S7 and S8 only asked 19 and 11 questions, respectively.
Though the evidence is insufficient to reject our original hypothesis, it provided an
unexpected insight into the needs of the programmers.

2.3.1 About the programmers’ needs

Instead of asking for help to formulate good decisions related to faults, the program-
mers made decisions on their own and merely asked the oracle for confirmation.
The only two common requests made by all eight programmers were the confir-
mation of their proposed fault identities and fault repairs. The programmers with
no assistance still asked for such confirmations, though we did not reply. To our
surprise, only one programmer, S8, requested confirmation on his proposed fault
locations.

In the case of fault 1 where S3 and S4 decisions were already correct, they did
not have to ask any more questions. The same did not hold true for S7 and S8
who debugged fault 2. They asked very few questions before they formulated their
decisions on faults. Most of their questions were posed after the oracle rejected
their decisions and they had to look for alternatives.

The programmers needed to make more requests for help to benefit from the
oracle. Our speculation identified the following additional needs to which the oracle
should respond.

1. Programmers need suggestions on what can help.
The programmers claimed that they did not ask many questions because they
did not know what to ask. They did not always know what information could
save them time or improve the accuracy of their decisions. Instead of asking
the oracle for a program overview, bothS7 and S8 spent 1-11

2 hours examining
the code before they began to ask questions. Neither S7 nor S8 asked for the
routine that performed the task they found missing – the information that
could have improved the accuracy of the repair for fault 2.

2. Programmers need an easy-to-access assistant.
All programmers with the oracle access felt that it was inconvenient to fre-
quently leave their debugging environment to see the oracle. S3; S4; S7; and S8
said they would have asked more questions had the oracle been seated next
to them.

3. Programmers need unsolicited help.
When the programmers, like S1 and S8, suspected the wrong fault locations,
their confidence convinced them that a request for confirmation was totally
unnecessary. S1 considered such request a trait of a novice and would not ask
for confirmation even if he could access the oracle. S8 took about four hours
before he realized he needed help and asked for it.

2.3.2 About the assistant

The oracle in this study was passive most of the time. He could provide information
only after the programmer requested help. One unplanned action from the oracle
was for him to ask programmers questions. However, according toS7 and S8, the
oracle’s questions helped them more than the information they asked for. The
oracle’s questions helped S7 dismiss a wrong fix and S8 locate the faulty routine.
These oracle questions also inspired programmers to make more requests for help.
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Unfortunately, this study provided insufficient evidence for or against our origi-
nal hypothesis. We had to conduct a follow-up study to stimulate the programmers
to ask more questions.

3 Pilot Study 2

We extended the role of the oracle for Nu to allow him to take the initiative. He can
observe, question, warn, and give information without the programmers’ request.
We refer to this oracle as an active oracle. We refer to the oracle in the previous
study as a passive oracle. The oracle is still the same person, however.

Because we expected that the programmers would ask for more help and receive
more information from an active oracle, we wanted to test whether they would de-
bug faster or more accurately than the group with no assistant. We also anticipated
that the group with the active oracle assistant would perform better than the group
with the passive oracle assistant.

3.1 The Active Oracle Assistant for Nu

Our active oracle assistant for Nu has two features: the all-you-can-ask feature
and the observation-and-action feature. Theall-you-can-ask feature is the same as
the one for the passive oracle. The oracle can answer any questions, except direct
questions on the identity, the location, and the repair of the fault. Theobservation-
and-action feature lets the oracle observe when the programmer needs help, then
initiate the appropriate help. The oracle has the freedom to question programmers,
issue warnings, give hints, or provide other means to improve the programmers’
decisions on faults.

To stimulate the programmer to ask more questions, the oracle sat next to
the programmer and gave a program overview and a failure overview right at
the beginning. His location not only permitted him to observe the programmer’s
progress and take the initiative, it also made the oracle easier to access. His
overview established a context for the programmer to ask questions. The program
overview covered the general functionality of Nu, the input and output, the global
data variables, and the data files. The failure overview reiterated the information
in the README file (an error-revealing test case, the nature of the failure, and the
description of other failing conditions). The oracle also went through a sample run
of an error-revealing test case.

3.2 The Study

Because fault 1 was too easy to find and fix, we only studied fault 2. We studied
two more programmers, S9 and S10. Both met the same requirements mentioned
in Section 1.2. To prevent S9 and S10 from getting clues from previous participants,
we kept the identity of S1-S8 from them, and vice versa.

The active oracle worked with S9 and S10 on a one-on-one basis. After the
oracle’s overview, the session was open for questions and answers both ways. Their
performance was compared with that ofS5 and S6 who received no assistance and
that of S7 and S8 who received assistance from the passive oracle.

3.3 The Results

ANOVA suggests that the group with Nu’s active oracle assistant debugged Nu
more accurately than the group with no assistant. The difference is significant
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because the p-values for AC and AACLOC are 0.033 and 0.001, respectively. Our
sample size of two per group is adequate to support this claim because the power of
test is greater than 97% for both measurements. ThoughS9 andS10 were the fastest
among those who debugged fault 2, we needed a sample size of five to confirm a
significant variation in SPEED.

The comparison of the performances of all programmers who debugged fault 2
is shown in Appendix C. The contrast analysis suggests that the group with the
active oracle performed better than the group with the passive oracle assistant. It
yields significantly better AACLOC (p = 0.027), TIME (p = 0.008), and SPEED (p
= 0.017). Unfortunately, the sample size is inadequate to support this claim with
statistically significant confidence.

3.4 The Findings

This study still offered more evidence against our original hypothesis. The com-
bined demands for verifying fault locations and program states is only 8%. The
high demands in both tasks did not correlate to the improved performance.

This study did provide a wealth of information on effective debugging assistance,
however. The active oracle succeeded not only in making programmers debug
twice as fast as those with the passive oracle, but also in increasing the number of
programmers’ questions seven-fold. The following subsections discuss the types of
demands programmers made and how the oracle responded to them.

3.4.1 About the programmers’ needs

We categorized the programmers’ requests into confirmation and explanation re-
quests. Each confirmation request is either a hypothesis statement or a yes-or-no
question. Each explanation request is one of the typical “what”, “when”, “where”,
“why” and “how” questions. We studied the number of requests made, what the
requests asked for, and how many times the programmers presented wrong hy-
potheses or proposed wrong decisions.

The results in Figure 2 show that 85% ofS7�S10’s requests were for confirmation.
Their requests to confirm their understanding of the program were three times
higher than their requests to confirm fault-related decisions and the intermediate
correctness decisions combined. Fault-related decisions included the decisions on
the identity, the location, and the repair of faults. The intermediate correctness
decisions included the correctness of data value, program parts, program behavior,
and conditions leading to failure.

Programmers needed help to formulate fault-related decisions. Two thirds of
the fault-related decisions were wrong, but all of their intermediate correctness
decisions were right. To improve the accuracy and speed in formulating fault-
related decisions, the programmers needed two major things: help at the right
time and adequate understanding of the problem.

1. Assistance at the right time
Programmers needed both the information and the question at the right time.
When the oracle questioned the programmer at the time the programmer
misunderstood something, he cleared up the misunderstanding that could
lead programmers to waste time.

� The right timing of information could save debugging time.
The right information at the right time can save time – as it can eliminate
programmers asking irrelevant questions or using inefficient schemes to
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derive the same information. A program slice was a good example. Had
it been given at the beginning of the fault-finding phase, programmers
could save debugging time.
A program slice is either static or dynamic. A static slice includes all
statements that can affect the variable [Wei84]. A dynamic slice includes
all statements that actually affect the variable with respect to the test
case under investigation [Agr91]. If programmers look for program slices
when they try to locate the faults, they would not waste time investigating
irrelevant locations.
Not all programmers started off identifying erroneous variables and iden-
tifying their program slices, however. Some asked questions irrelevant to
the code that the erroneous variable depended on. Those who looked for
a program slice did not always use an accurate or an efficient method to
define a slice either. To find routines leading to the failure, they usually
relied on two Unix commands: grep and ctags. Unfortunately, the grep
on variable names yielded a rough and inaccurate static slice of the vari-
able. Their grep-slice was even more inaccurate if they were looking for
a dynamic slice. S10 tried to identify the program slice with an inefficient
method. He spent over one hour trying to define program slices by finding
what did not belong in them. His quest ended when the oracle gave him
the routine-level slice (similar to the one shown in Figure 3) as the hint.
Had he ask for this hint earlier (as S9 did), he might not have wasted
time asking almost twice as many as questions asS9 (94:54 questions).

� The right timing of information could improve debugging accuracy.
The information is useful only when the programmers know how to use
it. The timing of the information on an abort condition is a good example.
When S9 and S10 received this information in an overview, they did not
even remember it. When the oracle told them again during the fixing
phase, they considered it a vital clue to accurately repair fault 2.

2. Adequate understanding of the problem
With or without an assistant, all programmers in our study who achieved
100% AC knew (1) the erroneous data variables, (2) the routines that affect
them, (3) the location where their values first went wrong, (4) the correct val-
ues they should have, and (5) the consequence of their fixes. We consider these
as a minimum set of facts required to find and fix fault 1 or fault 2 properly.
All programmers who could not fix either fault, for example, did not know the
consequence of their fixes. However, to fix fault 2, programmers needed one
extra fact – the existing routine for the missing task. All programmers who
did not know this fact failed to fix fault 2. Each of these facts can be viewed as
a milestone in a model of a decision-making process for a debugging purpose.

What we learned about the types of information programmers wanted to under-
stand was not a startling discovery. The top three types of information (see Figure
2) were the program data, program functionalities, program behavior.

Our observation also revealed preferences on the representation of information.
The programmers liked to refer to data variables with respect to the semantic of
its value. For example, the name-reference to a pointer pde varied from a copy of
the original pde, an old pde, to a pointer to the password database entry. According
to their answers to our AboutBug questionnaire, they initially defined the search
space for fault as a list of .c files. As they searched for fault, this representation
was refined to a list of routines. They did not define the search space in terms of
statements until they thought they found the fault.
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3.4.2 About the assistant

Because Nu’s oracle helped the programmers more when he was active, the location
of the active oracle, the observation-and-action feature, or both contributed toward
improving debugging time and accuracy. Both factors stimulated a higher quality
and quantity of questions, which made programmers use and benefit more from
the all-you-can-ask feature.

Below is a discussion on the common information, questions, and observed
events that aided the debugging decision-making processes. We discuss the all-
you-can-ask feature under its two subfeatures: the explanation feature and the
confirmation feature.
The explanation feature

Though answers to the explanation requests varied, the answers to requests
concerning program behavior deserves attention. Because such requests were often
phrased as a ”What-If ” question (e.g., “What happens when (specified condition)
occurs?”), the answers were both actual and hypothetical. The behavior was often
explained in terms of the consequence of the specified conditions. One sample
question was "What would the program do if it received the abort command at the
top-level?"
The confirmation feature

To respond to a confirmation request, the oracle indicated yes with reasons why
or no with criticisms. To indirectly criticize, the oracle questioned a programmer to
justify the decision. When a programmer gave his reasons, the oracle argued why
they were wrong. In many cases, a programmer found his own flaws as he tried to
explain. To directly criticize a programmer’s decision, the oracle explained why he
was against it. The information commonly used in his argument for fault-related
decisions are as follows:

� To criticize a decision on a fault location, the oracle often used dependency
information. The common argument is that the failure did not depend on
the code at the specified locations. In another words, the oracle ruled out
a location when it did not belong within a program slice of the erroneous
variable.

� To criticize a decision on a fault identity, the oracle often explained why the
failure was not the consequence of such fault.

� To criticize a decision on a fault repair, the oracle identified the undesirable
consequence and the test conditions under which the program would fail.

Note that we use the term "criticize" instead of "verify" because the oracle’s
reason was not a proof of correctness. Rather, it gave the programmers reasonable
doubt.
The observation-and-action feature

This feature helped to remedy or prevent potential problems that could affect
debugging performance. The observation enabled the oracle to recognize events
that called for his initiative. The action provided the appropriate help. We cat-
egorized the event-and-action pairs, or rules into three classes: remedial rules,
preventive rules, and promotional rules.

1. The remedial rules
When the oracle recognized events suggesting potential problems, he took
remedial action. The events may suggest that programmers suspected a
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wrong location, focused on an irrelevant code, settled with a repair with side-
effect, or misunderstood the program.
The remedy often began with a question, followed by information. The oracle
asked questions to confirm his suspicion of the problem, to find out the pro-
grammers’ assumptions and justifications, and to enforce schemes to overcome
their fixations. The information was provided later, as the oracle argued with
their justifications, answered their questions to clear up misunderstandings,
and suggested alternatives.
We observed two common problematic situations that caused the oracle to
take remedial action.

� The programmer may suspect a wrong location.
When the oracle observed S9 inspecting a wrong location for a while, he
asked why S9 was looking at that part. The oracle left S9 alone when
S9 replied that he just wanted to understand what the routine did. At
another time when S9 did suspect the wrong place, the oracle shifted
S9’s attention. He made S9 step backward through the routine-level
trace while he repeatedly asked S9 to verify the values of the erroneous
variables after each routine call. He did not stop until S9 found the
routine where the value first went wrong.

� The programmer asked too many irrelevant questions.
When the oracle got too many questions concerning code that the erro-
neous variables did not depend on, he began to question the programmers
about the program slice. Sample questions included: “What is the role of
the (specified) variable?", “What happens when the (specified) condition
occurs?”, and “What does this routine do?”. When the answer was wrong,
the oracle explained that aspect of the slice. When the programmers did
not know the answer, they asked. If a programmer’s questions remained
off-focus, as in case of S10, the oracle gave the routine-level dynamic slice
(similar to the one in Figure 3) as a hint. This hint madeS10 ask questions
that focused more on the slice.

2. The preventive rules
The oracle recognized an opportunity to prevent commonly occurring problems
before they wasted time or lead to inaccurate decisions. His preventive action
was to offer the appropriate assistance. Both hints and questions were used.
Two situations that the oracle helped prevent were:

� A programmer took too much time reviewing the program he had never
seen before.
The oracle prevented this situation by giving an overview of the program
before a programmer began to debug it. The overview established the
context of the program early. It made S9 and S10 start asking questions
at least an hour sooner thanS7 and S8.

� A programmer reimplemented an existing routine.
When a programmer indicated which task was missing, the oracle gave
him a data abstraction of the erroneous global variable hint – which
happens to be the source file that contained the reusable routine for that
task. Both programmers immediately recognized the routine they could
reuse for fault 2 repair. This hint could have helpedS5 make the accurate
repair, as he decided against the right solution because he did not want
to implement a new routine.

3. The promotional rules
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The oracle recognized the opportunity for a programmer to use certain tools
or features to improve his debugging time or accuracy. His action was to
stimulate them to use the features.
An example is when a programmer did not make any fault-related decisions
for a while. The oracle asked questions to stimulate the programmers to make
hypothetical decisions. This gave the oracle more opportunities to help them
study the consequence of such decisions. Sample questions included: “What
are the possible causes of failure?”, “What is the correct value of variable?”,
“How could the problem be fixed?”.

The findings from this study do not support our original hypothesis. In our
hypothesis, we assume that information alone provides the necessary assistance.
If this assumption holds, then information from the oracle should be sufficient.
Perhaps S9 and S10 performed better than S5 � S8 because they asked more and
knew more. Perhaps the location of the active oracle alone, not his observation and
assertive action, was responsible for the increase in the number of questions. In
another words, the timing of the information and the customized assistant might
not matter.

To settle this dispute, we devised two alternatives to an active oracle and tested
them in our follow-up study. This test should also help us find an automatable
replacement of an active oracle assistant (which is not always available in practice).
Without an oracle, however, neither alternative could support the all-you-can-ask
feature.

4 Pilot Study 3

In place of the all-you-can-ask feature, we summarized debugging information
from previous studies into a set of hints. We made sure that the hints covered the
information programmers asked, in the abstract representations that match their
perceptions. These hints were intended to help the programmers understand the
program, formulate better fault-related decisions, and self-criticize their decisions.

We envisioned two forms of assistant. The Information-only (I-only) assistant
gave away all hints simultaneously. TheObservation-Information-Question (OIQ)
assistant gave away both hints and questions at the appropriate time.

We wanted to compare the performance among the groups of programmers that
debugged fault 2. In particular, we wanted to test whether the group with the
OIQ assistant debugged faster or more accurately than the group with the I-only
assistant. We wanted to see which of the two assistants can improve the debugging
performance just as well as the active oracle assistant. We also wanted to make
sure that the programmers in each group debugged faster or more accurately than
the group with no assistant.

4.1 The Information-only Assistant

The information-only (I-only) assistant gave all debugging hints on paper at the
same time. Three categories of hints are the overview hints, the slices-related hints
and the fault-related hints.

The overview hints include the verbal program overview and the failure
overview. In our study, the program overview covered the overall functionality
of the program, its input/output, its data files, and its global variables. Thefailure
overview covered the tasks involved in the erroneous transaction and the nature of
program failure.
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The slice-related hints define and explain the search space for a fault. Our
study included the following slice-related hints.

� The statement that prints the erroneous output
This hint should help identify erroneous output variables. Note that this hint
is suitable when the program terminates with the wrong output. Other forms
of failure may need other hints to serve the same purpose.

� The dynamic slice
This hint should help explain dependency between the code and the failure.
It lists statements that affect the specified output variable in the given test
case [Agr91]. We tag line numbers, routine names, and the file names to the
slice for reference purposes. A programmer can extract from this hint: data
dependency, control dependency, and statement dependency information.

� The calling path
This hint should help explain the functionality on the dynamic slice. It lists
all routines in a dynamic slice (indented according to the execution sequence)
with two tags: the corresponding input command and the file name for each
routine. Figure 3 displays this hint.
The study by Soloway and Ehrlich [SE84] indicates that programmers under-
stand the program functionality by recognizing program plans. A program
plan relates the code pattern with its concept. Because a program slice is one
possible form of a program plan [Ris92], it could help programmers under-
stand the functionality. However, it should be easier to recognize a plan from
a one-page routine-view of a slice than a multiple page statement-view of a
slice.

        cmds()  [main.c]

             case  CNTRL_F :  
                       find() [cmd.c]
                               find_user() [cmd.c]

             case  CNTRL_E :   
                       edit( )   [cmd.c]
                               copy_pde( )  [pde.c]

                                case  CNTRL_E:   
                                         edit_map( ) [map.c]

                                                 case 'a':  case 'h':
                                                            add_host_item( )   [map.c]
                                                                         add_home_dir( )   [homes.c]

                                                case CNTRL_T:

                                case CNTRL_T: 
                                         if  (delete) 
                                               copy_pde( )  [pde.c]
                                               free_pde( )  [pde.c]

             case  CNTRL_T:
                        save()  [cmd.c]
                                build_home_dir()   [homes.c]

Figure 3: The calling path forHome dir list! pde in build home dir()

� The routine-level trace
This hint helps explain the execution behavior and data on a dynamic slice.
It lists the program states as if break points were set at the return of each
routine call in a dynamic slice. The trace includes only the changes in values
of the output variables and other variables that affected them.
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To make the trace more readable, the raw values are replaced or accompanied
by their interpretation. Aliases of the data are also presented. For example,
a trace may list “startpde (in cmds()) = an address of a password database
entry”,“pde (in edit()) = startpde”, “Home dir list ! pde contains a copy of pde.”

The fault-related hints help programmers formulate, confirm, or criticize their
decisions on the identity, the location, and the repair of faults.

� Test data set description
This hint is the next best thing to knowing the consequence of the fixes. It
describes the combinations of conditions related to the erroneous transac-
tion. The programmers can use this description to form test cases to test the
program themselves.

� Data abstraction of the erroneous global data
This hint should help the programmer find reusable code to repair the pro-
gram. It includes the routine name, parameters, and its header comment.
This hint includes the routineChange home dir(). The call to this routine is
needed for fixing fault 2.

We intentionally did not question programmers in order to avoid the use of
questions as form of assistance. Thus, we had no feedback on which variable
was erroneous. We had to give the slice-related hints for both output variables:
Home dir list ! pde and Home dir list ! fsl. With no observation to determine
timing for hints, the programmers were free to pick which hints to use and when
to use them.

4.2 The Observation-Information-Question Assistant

This assistant is modeled after observation-and-action feature of the oracle. The
OIQ assistant uses observation (O) to recognize the problems or opportunities to
improve debugging performance. The action here is limited to providing debugging
hints (I) and questions (Q). Though the same categories of hints as in Section 4.1
are given, the hints would be customized based on programmers’ answers to our
questions. The programmer’s decisions on which output variables are erroneous,
for example, determined which program slices he would receive.

The assistance is customized for each programmer. The observed events and
the programmers’ feedback determine which hints or questions each programmer
will receive. We define four rules to observe and to act on the following four trigger
events.

1. A programmer entered the fault-finding phase.
First, we gave the overview verbally. Afterward, we asked “What are the
erroneous output variables (if any)?” and gave the statement that prints the
erroneous output. Once the programmer identified the erroneous variable(s),
he received the calling paths, the dynamic slices, and the routine-level trace
of that variable(s).

2. A programmer suspected a wrong location.
If this event occurred after the programmer already had time to review the
routine-level trace, this event would trigger us to suggest a strategic inspec-
tion of the trace. We made the programmer forward step through the routine-
level trace while we repeatedly asked “Is this program state correct?”. Once
the programmer started to doubt, we switched to backward stepping. We
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stopped when the programmer identified (what he thought was) the first er-
roneous program state.
This feedback enabled us to generate one extra hint on a fault location. Once a
programmer identified the first erroneous state and the last correct state, we
identified the routines and the statements that were trapped between these
two states as our guessed fault location.

3. A programmer claimed that he fixed the fault.
This event would trigger us to ask “Does your fix work with other test cases?”
and give the test data description. This question was repeated for each com-
bination in the description.

4. A programmer identified the missing task.
This event would trigger us to ask “Do you know of existing code to fix the
problem?” and to introduce the data abstraction of the erroneous global data
that contains the reusable routine.

These rules are intended to make sure programmers can find most of the facts
we identified as milestones in a debugging decision-making model in Section 3.4.1.
The first rule is a preventive rule, intending to prevent programmers from wasting
time investigating code irrelevant to the program failure. This rule forces a pro-
grammer to assimilate the information on the erroneous variables and the slice of
the erroneous variables. The second rule is a remedial rule, intending to overcome
a programmer’s fixation and to suggest other possible locations for faults. This
rule forces a programmer to assimilate the information on the first location where
the data value first became erroneous. The third rule is also a remedial rule, in-
tending to make a programmer self-criticize his own decision on fault repair. This
rule forces a programmer to realize the consequence of his repair. The fourth rule
is a preventive rule, intending to save time to rewrite the code and improve the
accuracy of the repair. This rule forces a programmer to recognize the existence of
reusable code.

4.3 The Study

We studied four more programmers: S11, S12, S13, and S14. S11 and S12 received the
OIQ assistant. S13 and S14 received the I-only assistant.

Besides all requirements mentioned in section 1.2, the programmers must have
met more group-requirements. One person in each group (S12 and S13) must never
have debugged others’ programs and must not have written a C program for at
least three months. The other person (S11 and S14) must have debugged somebody
else’s programs before and must have written a C program within the same week
of our study. We did this intentionally to see if our assistants are effective enough
to overcome these differences.

All four programmers worked with the second faulty version of Nu. The mate-
rial, the debugging environment, monitoring process, and performance measures
remain the same as in the first two studies.

After the 15-minute verbal overview, we gaveS13 and S14 the stack of hints and
let them work on their own. We gave the first pair of questions and hints toS11 and
S12 right after the overview. The rest followed when we observed the trigger event.

Originally, we planned to present just the questions and the hints on paper. The
questionpreceded the hints because we listed it on a cover sheet of the hints. We had
to change our plan when the programmers ignored our first pair of question-and-
hints for identifying erroneous variables. Our immediate reaction was persuaded
them to answer by telling them that their answers would allow us to give more
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hints. This experience made us ask the questions verbally after we gave the hints
for the rest of the session.

In the follow-up interview, we surveyed the programmers on the helpfulness of
the hints and the assistants.

4.4 The Results

ANOVA suggests that the group with the OIQ assistant found and fixed the fault
more accurately than the group with no assistant (S5 and S6). The p-values for
AC and AACLOC are 0.033 and 0.003, respectively. Our sample size of two is
adequate to support this claim because the power of test for AC and AACLOC are
both greater than 99%.

Performance variations among other groups that debugged fault 2 (see Appendix
C) have either no statistical significance or statistical significance with inadequate
sample size. Nonetheless, some observable differences or similarities are worth
mentioning.

� The group with the OIQ assistant performed almost as well as the group with
the active oracle assistant.
With the OIQ assistant, the programmers took about 23

4 to 31
4 hours to arrive

at the right solution – about 15 - 45 minutes longer than the group with the
active oracle assistant. This difference in TIME is not significant. In fact, the
contrast analysis found no significant differences between the OIQ group and
the active oracle’s group in all five measurements

� The group with the I-only assistant did no better than the group with no
assistant.
Programmers in both groups settled with the solutions with side-effects. How-
ever, with the I-only assistant, the programmers took about 31

2 to 4 hours –
about twice as long as the group with no assistant! This difference in TIME
is significant (p = 0.009).

� The group with the OIQ assistant debugged Nu faster and located the fault
more accurately than the group with the I-only assistant.
These differences are statistically significant. The p-values for AACLOC and
SPEED are 0.01 and 0.04 respectively. This result suggests that the timing
of assistance, the ability to customize assistance for individual programmers,
or both matters.

4.5 The Findings

We found more evidence against our original hypothesis. When debugging infor-
mation is offered with little regard on its timing and no help to assimilate it – as the
I-only assistant did – it could make some programmers debug slower than those
with no assistant. The assistance in the form of observations and questions – as
offered by the OIQ assistant – was needed to make programmers benefit from the
information.

4.5.1 About the programmers’ needs

Programmers with the I-only assistant did not know how to assimilate some of the
hints. Both S13 and S14 initially ignored the hints and just examined the program
directly. After approximately two hours, both began to pay some attention to the
hints. Though they had no trouble discarding useless hints (those related to correct
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output variables), they did not use two key hints: the test data description and the
data abstraction. S13 and S14 also disliked the timing of the hints. They would
prefer to receive hints dynamically as they debugged the program.

Programmers with the OIQ assistant still requested confirmation of fault iden-
tity and the repair, though we refused to answer. Instead, we gaveS11 and S12 the
test data description hint and asked them if their fixes worked with these data.
Though the programmers needed help to identify the fault location, they did not
ask for confirmation. The help that worked required the assistant to intervene
when the programmers developed a fixation on a wrong location.

The need for support for decisions on correctness of data value surfaced when we
enforced our fault-localization strategy. The programmers needed help to maintain
details about these intermediate decisions and their inter-relationships. WhenS11
and S12 had to verify a lot of program states, they forgot their earlier decisions.
Sometimes, they could not verify a data value that was defined by the variable they
claimed erroneous earlier. Sometimes, they could not even verify the same variable
values they considered to be erroneous earlier.

4.5.2 About the assistants

The OIQ assistant seems to satisfy the programmers’ needs more than the I-only
assistant. One piece of evidence to support this is in the performance of the pro-
grammer who had no recent C-experience and no foreign program debugging expe-
rience. With the OIQ assistant, S12 performed just as well as S11. With the I-only
assistant, S13 debugged twice as slow (in SPEED, not TIME) and half as accurately
as S14.

Below is the discussion on the three types of assistance featured in this study:
observation, information, and question.
Observation

We did not observe the programmers as closely as the oracle. First, the oracle
kept programmers under constant supervision. We just checked on them every 10
minutes. Second, the oracle observed what programmers did on the screen, all the
remarks they made, and even their body language. We just observed their verbal
comments and their answers to the AboutBug questionnaire at the end of each
hour.

The observation did help us recognize the need for additional assistance. When
the programmers were unable to verify data values, we reminded them of their
previous decisions, like “you said this was wrong earlier.”
Information

Based on the rating and comments fromS11; S12; S13; and S14, the three highest
rated hints were the overview, the routine-level trace, and the calling path of the
erroneous variable. Programmers said these hints saved them time because they
no longer had to seek the same information on their own. They said the abstract
representation of these hints promoted program understanding and improved the
accuracy of their decisions. The format of the calling path (see Figure 3) received
the most praise.

The common hints that the programmers used to support their fault-related
decisions were as follows:

1. To locate the fault, all three views of a dynamic slice help. The order of
preference is the behavior view (the routine-level trace) first, routine-view
(the calling path) second, and the statement-view last.
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2. To identify the fault, three hints that help are the failure overview, the trace,
and the statement that printed the output.

3. To fix the fault, three hints that help are the test data description, the data
abstraction, and the trace.

The lack of the timing in the I-only assistant caused some hints to lose their
problem-prevention property. ThoughS14 needed and used a calling path, he spent
an hour defining it himself before he realized the same hint was already available.
Thus, this hint did not save him time.

The importance of the timing of the hints remained apparent with the OIQ
assistant. Both S11 and S12 forgot that the fix must handle the abort conditions
from the overview. We reminded them when we presented the test data description
as they began to repair the program. The data abstraction was helpful when
we brought it to the programmers’ attention after they indicated which task was
missing. This hint was ignored when we gave it as an extra hint during the fault-
finding phase.
Questions

When we used the hints and questions in place of confirmation, the questions no
longer served to identify the types of assistance needed. They succeeded, instead
of preceded, the information, in order to help assimilate hints and generate more
customized hints. With the questions, programmers with the OIQ assistant exam-
ined and used all our hints constructively. Without the questions, programmers
with the I-only used very few hints. S14 used only one hint, the routine-level trace.
The fact that S13 and S14 did not assimilate the test data description and the data
abstraction may explain why their accuracy suffered.

One problem with a long series of questions was that they annoyed the pro-
grammers. Both S11 and S12 tried several times to make us stop our verification
requests. They claimed that they already knew the fault location and perceived our
questions as pointless. Though their feedback led them to the faulty location, both
programmers discarded this information. They did not consider this hint until they
used the test data description hint and realized that their repairs had side-effects.

5 Summary

We studied how expert programmers debugged a program with over 4300 exe-
cutable lines with real faults of omission. In our attempt to find evidence to
suggest that our original hypothesis is worth pursuing, we tested four types of as-
sistants: Passive oracle, Active oracle, Information-only (I-only), and Observation-
Information-Question (OIQ) assistants. The only two that helped improve debug-
ging accuracy were the active oracle and the OIQ assistants.

Our results suggest that our original hypothesis is not worth pursuing because:

1. The demand to verify fault locations or data values was only 8% of program-
mers’ requests to the oracle.

2. The programmer who made the most requests to verify fault locations was,
ironically, the only one who could not fix fault 2 with the oracle assistant.

3. Information alone may not be an adequate form of debugging assistance.
When debugging information is offered with little regard on its timing and
with no assistant to help assimilate it – as the I-only assistant did – it could
make some programmers debug slower than those with no assistant.
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The major problems that deserve more attention are the underuse problems.
Programmers did not benefit from our passive assistants – the passive oracle and
the I-only assistants – because:

� Programmers underused the assistants.
The programmers did not really know how to use an intelligent, but passive,
assistant like an oracle. They did not always know what to ask for, when to
ask for it – even when they needed help (e.g., when they were stuck at a wrong
location). Programmers with the I-only assistant did not always know how
or when the hints could help them debug. One of the programmers used only
one hint and ignored the rest.

� The assistant underused the knowledge of the programmers.
The passive oracle underused the knowledge of the programmers as he could
not observe them. He would not know that the programmers misunderstood
something until they asked for help. Thus, he could not clear up their mis-
understandings early enough to prevent them from wasting their time. The
I-only assistant did not ask for the programmer’s belief on the correctness of
the output variables. Without that feedback, we had to give the hints related
to the slices of both the correct variable and the erroneous variable. Though
both programmers successfully discarded the hints related to the slice of the
correct variable, we still believe that the extra, irrelevant information could
distract programmers.

The two active assistants that worked – the active oracle and the OIQ assistants
– offered help to mitigate the underuse problems as well as respond to programmers’
demands. Their features are as follows.

1. Confirmation feature
The confirmation requests constituted 85% of the total requests that pro-
grammers who debugged fault 2 made to the oracle. We noticed that expert
programmers liked to arrive at a tentative decision or understanding first.
The hypothesis or a tentative decision in a confirmation request helped the
oracle realize the flaw in a programmer’s belief. The rationale behind the ora-
cle’s judgment corrected that misunderstanding. Once a programmer realized
that he was wrong, he asked for more help.

2. Explanation feature
The oracle provided the user-requested explanation. This feature is an impor-
tant companion to the confirmation feature, as programmers did not always
understand what the oracle told them.
The OIQ assistant provided the system-initiated explanation – in terms of
hints. All programmers who received the hints indicated that they could not
have debugged as fast (if at all) without them. Yet, such explanation alone
did not guarantee the improvement of accuracy – the evidence is the failure
of the I-only group.

3. The observation-and-action feature
This feature mitigates the underuse problems by providing unsolicited and
customized help at the appropriate time. Both assistants that worked – the
active oracle and the OIQ assistants – shared this feature.
To provide the unsolicited help, the assistant first recognized the situations
under which it can (1) prevent potential problems, (2) remedy current prob-
lems, or (3) promote its assistance. The appropriate help may take the forms
of questions, explanation or hints.
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According to programmers, the oracle’s questions contributed more to their
success than their own questions. To prevent or remedy problems, the ora-
cle questions assessed each programmer’s knowledge in order to design cus-
tomized help for him. Some of the roles they played were surfacing wrong
assumptions, eliciting and structuring the problem, and enforcing a scheme
to overcome their fixation.
Questions were used to promote assistance in two different ways. The oracle
used them to stimulate programmers to hypothesize about the program and
the fault. The OIQ assistant used them to customize as well as assimilate
the hints. The feedback on the correctness of output variables cut the num-
ber of slice-related hints in half. A string of questions helped programmers
assimilate the alternatives for fault location and fault repair from the given
hints.

To get some ideas on the benefits of these features, we compared the failure rate.
We found that 83% of the programmers in groups with neither the observation-and-
action assistance nor the confirmation assistance (that is, the group with no assis-
tant or with the I-only assistant) failed to fix the fault properly. For the group with
the confirmation and explanation assistance (that is, the passive oracle group), only
25% failed. The failure rate is 0% for the groups with the observation-and-action
and explanation feature (that is, the active oracle and the OIQ groups). The active
oracle groups debugged slightly faster than the OIQ group, as the programmers
also received the confirmation assistance.

We must emphasize that our results only "suggest" the above findings. Because
our original intention was to find if our research hypothesis is worth pursuing, our
studies were too small to confirm them. For that, we need larger experiments with
more programs, faults, and programmers.

6 Related Work

Several empirical studies in other disciplines obtained similar results as ours.
Research findings in decision support systems support the same problems we rec-
ognized in debugging assistants. Research findings in critic systems indicated the
need for similar types of assistance we found helpful.

A decision support system (DSS) is a computer-based system which has the
objective of enhancing the overall effectiveness (e.g., by increasing reliability, accu-
racy and efficiency of obtaining relevant information) of decision makers [JWF87].
Conventional DSSs act as passive partners in decision-making. They are passive
because they merely place a set of useful facilities at the disposal of a decision
maker and expect that the decision maker will somehow exploit these facilities ef-
fectively for decision-making. They cannot take initiative — they can only respond
to user requests [Rag91].

Passive assistants provide a weak form of support that does not exploit the full
power and potential of computer-based support. Empirical studies in the problems
users encounter in dealing with high functionality computer systems indicate that
the users do not know:

� what tools can help [FLS85],

� when to use the tools to help [FKF+89],

� how to apply the results that the tools produce [BFN86],

� how to adapt the tools to their specific needs [Fis87], and
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� how to improve their situation with assistance from knowledgeable agents
[Ree90].

As a result, passive DSSs were underused [FM91]. At the opposite end, the
expert systems, which aim to derive the decisions autonomously, often underuse the
knowledge of their users [FM91]. Because they often lack the knowledge required
to cover the complete problem domain, interaction with the human is inevitable.
Yet, the systems de-skill the human by treating him as a mere supplier of data.
Researchers in DSSs [FM91, Rag91] and our findings agree that merely providing
more information would not solve these underuse problems.

To use both the human and the machine knowledge to its full potential, recent
research in DSS moved toward combining the conventional DSS with components
of expert systems – making the assistant active [Rag91, JWF87]. Active decision
support systems (ADSS)which emerged from this combination provide a cooperative
problem solving environment. ADSSs provide tools to actively participate in the
decision-making process, and decisions are made by fruitful collaboration between
the human and the machine [Rag91]. Like our active oracle assistant for Nu, both
the user and the system can take the initiative.

An ADSS can be considered a decision-making critic, as it shares the same
characteristics and the same goals as the critic systems. Critic Systems support
users in performing their own activities, provide the information only when it is
relevant, and interfere only when the user’s plan, action, or product is significantly
inferior. Critics work under the assumptions that a user is competent enough to
generate a product, determine a course of action, or make a decision by himself.

A traditional critic offers assistance similar to our confirmation feature. The
psychological research by Lange and Harandi [LH85] suggests that expert users
like to solve the problem on their own first before they consult an expert system. In
response to such habit, a critic acts as a complement of an expert system. Instead of
trying to solve the the problem autonomously, a traditional critic, like Miller’s AT-
TENDING [Mil83], becomes operative only after the user has a tentative decision.
After the system asks the user for the information on the details of the problem and
for his justifications, the system reconstructs a plausible decision-making process
using its knowledge base and internal models, and identifies potential problems
and possible improvements. Silverman characterizes such a traditional critic as
passive and after-task [Sil92].

According to Fischer and Mastaglio [FM88, FM91], a critic should also offer a
user-directed explanation feature. Because the users may not fully understand
the system’s comments, the users must be able to question the system for further
explanation.

A better ADSS or a critic system, according to several researchers [Sil92, FM91,
Mil88, Rag91], should offer assistance like that of our observation-and-action fea-
ture. Such critic monitors a decision making process and provides unsolicited help
or criticism when appropriate. A critic’s advice is easier to understand if a system
treats a user with respect to his knowledge and conceptual view [FM88].

Silverman’s Principle 1 states that a critic should have a library of functions
that serves as error-identification triggers, and influencer, debiaser, and director
strategies. The influencer strategies help prevent biases before they occur. The
debiaser strategies help correct the biases or errors after they occur. Thedirector
strategies help promote the use of a tool. All strategies could be activated before,
during, and after tasks. This is an improvement over the traditional feature that
offers an after-task debiaser alone.

Principle 1 is supported by the results from Silverman’s experiments with over
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one hundred participants on the largest real-world critic system, TIME3 [Sil91],
and his recent empirical studies with over fifty participants on sample critics for
statistical problems [Sil92]. In the latter one, his results are strikingly similar to
ours.

1. The users can be subjected to bias without a critic.
Without a critic, 82% of the users (including statisticians and graduate stu-
dents in statistics) failed to solve bias-prone statistical problems. In our
studies, 83% of the programmers in the groups with no confirmation and no
observation-and-action feature settled with the solutions with side-effects.

2. A critic that offers only a passive, after-task debiaser is not always adequate.
With these traditional features of a critic, 31% of users still failed. In our stud-
ies, the failure rate is 25% in the groups that received only the confirmation
and explanation assistance.

3. A critic that offers before-, during-, and after-task debiaser, influencer, and
director can optimize the accuracy in the solution.
The failure rate drops to 0%. We observe the same rate in groups that received
observation-and-action assistance.

Current application domains of Critic Systems or ADSSs include the medical
domain, business management, circuit design, ship design, kitchen design, knowl-
edge acquisition, software specification, and programming in Lisp. The parallelism
observed here suggests that debugging is a new application domain for a critic sys-
tem.

7 Future Work

Our preliminary results, with supportive evidence from research in decision sup-
port systems and critic systems, contributes to the state-of-the-knowledge in de-
bugging a list of suggestions and problems that deserve further investigation.

� One way to understand the complexity of a debugging problem is to view it
as a decision-making process. The research in decision support systems and
decision science could bring up currently overlooked issues.

� Problems of programmers underusing an assistant and vice versa hinder a
debugging assistant’s ability to improve debugging time or accuracy.

� A debugger is not likely to overcome the underuse problem by providing more
information.

� A debugging assistant that criticizes debugging decisions as well as the de-
cision making process has the potential to significantly improve debugging
performance.

� To mitigate the underused-assistant problem, a debugging assistant should
possess knowledge on some conditions under which it becomes helpful. Such
knowledge would permit the assistant to provide unsolicited help when the
timing is right.

� A debugging assistant can improve its effectiveness if it learns of the program-
mer’s knowledge and customizes its assistance to augment that knowledge.

3TIME supports US Army personnel at 17 sites nationwide who must write hundreds of decision papers
per year, one for each new piece of equipment the Army buys. It contains 1,500 rules, 2,000 note cards
and 300 analogs to influence, debias, and direct the Army personnel to better balanced decision papers.
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� The role of questions as a form of debugging assistance deserves further in-
vestigation.

Our future work is to enhance our prototype debugger, Spyder [Agr91], with a
debugging oracle assistant to help programmers decide on fault locations based on
our findings. To evaluate the quality of this assistant, we plan to conduct experi-
ments on Spyder with more programs, more programmers, and more faults. The
results of such experiments should yield a broader inference space to validate the
effectiveness of our debugging assistant. Whether or not our automated assistant
can be as effective as a human-oracle assistant remains to be seen.
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A The Programmers
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B The Measurements

The accuracy:

1. Accuracy in locating faulty routine (ACLOC):

ACLOC =

(
0; if search space omits faulty routine;

total faulty routines
total routines in search space Otherwise.

The search space consists of program parts that the programmer intended to
examine to find the fault. At the end of each hour, the programmer divides
the program into three regions: must-look, may-look-later, and will-not-look.
The must-look region is where he suspects the bug to be. The may-look-later
region is where he may look for the bug if none is found in the must look
region. The will-not-look region is where he thinks the bug could not possibly
be. The search space is the must-look region only if the faulty routine is in
there. Otherwise it also includes the may-look-later region.

2. Accuracy in identifying the fault (ACID):

ACID =
number of causes of failure identi�ed

total causes of failure

We define the fault identity as a chain of causes of the program failure. The
chain for fault 1 and 2 are shown in Figure 1.

3. Accuracy in fixing the fault (ACFIX):

ACFIX =

8<
:

1; if correct solution;
:50; if solution with side effect;
0; Otherwise.

A solution is a repair made on one of the causes of failures (see Figure 1).
Thus, any repair that merely avoids the failures does not count. A print
statement that echos the known correct output, for example, is not considered
a solution.

4. Overall accuracy (AC):

AC = 33 �ACLOC + 33 �ACID + 34 �ACFIX

AC is computed based on the last ACLOC, ACID, and ACFIX.

5. The average accuracy in locating faulty routine (AACLOC):
AACLOC is the sum of ACLOC reported at end of each hour divided by the
number of hours.

The Accuracy gained per hour (SPEED)

SPEED = 60 �
AC

TIME
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The time:

1. The actual time (TIME):
TIME is measured in minutes. This excludes (1) the time to copy over the tar
file, expand it, compile and run Nu for the first time, (2) the time to fill out
AboutBug form and mail the script at the end of each hour, and (3) the break
time. The consulting time with the oracle is included.

2. The estimated time taken to fix the fault correctly (ETIME):

ETIME = 100 �
TIME

AC

30



C The Results
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