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Abstract

Developing effective debugging strategies to guarantee the reliability of software is important. By
analyzing the debugging process used by experienced programmers, four distinct tasks are found to
be consistently performed: (1) determining statements involved in program failures, (2) selecting
suspicious statements that might contain faults, (3) making hypotheses about suspicious faults (variables
and locations), and (4) restoring program state to a specific statement for verification. If all four tasks
could be performed with direct assistance from a debugging tool, the debugging effort would become
much easier.

We have built a prototype debugging tool, Spyder, to assist users in conducting the first and last
tasks. Spyder executes the first task by using dynamic program slicing and the fourth task by backward
execution. This research focuses on the second task, reducing the search domain containing faults,
referred to as fault localization .

Several heuristics are presented here based on dynamic program slices and information obtained from
testing. A family tree of the heuristics is constructed to study effective application of the heuristics. The
relationships among the heuristics and the potential order of using them are also explored. A preliminary
study was conducted to examine the effectiveness of the heuristics proposed. Results of our study
show the promise of fault localization based on these heuristics as well as suggest criteria for precise
application of the heuristics (e.g., the standard of selecting thresholds). A new debugging paradigm
equipped with these heuristics is expected to reduce human interaction time significantly and aid in the
debugging of complex software.

�This research was supported, in part, by a grant from the Software Engineering Research Center at Purdue University, a
National Science Foundation Industry/University Cooperative Research Center (NSF Grant ECD–8913133), and by National
Science Foundation Grant CCR–8910306. A condensed version of this paper appears as [33].
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1 Introduction

In the software life cycle, more than 50% of the total cost may be expended in the testing and debugging
phases to ensure the quality of the software [30, 35]. Developing effective and efficient testing and
debugging strategies is thus important.

In standards terminology [7] errors are defined as inappropriate actions committed by a programmer
or designer. Faults or bugs are the manifestations and results of errors during the coding of a program.
A program failure occurs when an unexpected result is obtained while executing the program on a certain
input because of the existence of errors and faults.

Testing explores the input space of a program that causes the program to fail, while debugging tries to
locate and fix faults or bugs after failures are detected during test or use. Although testing and debugging are
closely related, none of the existing debugging tools attempt to interface with testing tools. Conventional
debugging tools (e.g., ADB and DBX [15]) are command–driven and tend to be stand–alone. Many fault
localization techniques used in current debugging tools (e.g., setting breakpoints) were developed in the
1960s and have changed little [5]. Users have to discover by themselves useful information for debugging.

Two major steps involved in the debugging process are locating and correcting faults. Previous
studies [30, 41] found that locating faults is the most difficult and important task in debugging. The focus
of our work is to develop methods that automatically localize faults and thus enhance the debugging process
as well as reduce human interaction time. The result of this study will support a new debugging paradigm
proposed in [34].

By surveying how experienced programmers debug software, we found that four distinct tasks are
consistently performed: (1) determining statements involved in program failures (e.g., execution paths)
so that the exact behavior of program failures and the influence among statements are understood, (2)
selecting suspicious statements that might contain faults, (3) making hypotheses about suspicious faults
(variables and locations), and (4) restoring program state to a specific statement for verification. The first
task can be achieved by executing a program step–by–step using some debugging tools. However, if a
debugging tool can automatically highlight the execution path of a program for a given input, the first task
will be accomplished more efficiently. The second and third tasks are currently performed by manually
examining the code and program failures without the assistance of debugging tools. As to the fourth task,
some debugging tools (e.g., DBX and GDB [40]) support facilities allowing users to set breakpoints, to
reexecute the code, and to verify the values of variables. Obviously, the debugging effort would become
much easier if all four tasks could be performed with direct assistance from a debugging tool.

We have built a prototype debugging tool, Spyder [1, 2, 4, 6], to assist users in conducting the first and
last tasks. Spyder performs the first task by using Dynamic Program Slicing [1, 3], and can automatically
find the dynamic slice of a program for any given variables, locations, and test cases in terms of data and
control dependency analysis. A dynamic slice is denoted as Dyn(P; v; l; t), whereP is the target program,
v is a given variable, l is the location of v, and t is a given test case [6]. Dyn(P; v; l; t) contains statements
of P actually affecting the value of v at location l when P is executed against test case t. Execution paths
of the program with given inputs are special cases of Dynamic Program Slicing.

In conducting the fourth debugging task, Spyder can restore the program state to a desired location by
backtracking the program execution to that location and need not reexecute the program from the beginning.1

The work described in this paper focuses on the second task — to reduce the search domain containing faults

1Readers are referred to [1, 3] and [2, 4] for more details on dynamic program slicing and backtracking, respectively.
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— referred to as fault localization. Several heuristics based on both dynamic program slices provided by
Spyder and information obtained from testing are proposed.

The rest of this paper is organized as follows. The heuristics proposed by us are illustrated in the second
section. In Section 3, a family tree of the proposed heuristics is constructed to study effective application.
Examples and results of preliminary studies of these heuristics are presented in Section 4. A brief survey of
related work is given in Section 5. Finally, the contributions and extensions to this research are suggested.

2 Our Approach

From the history of the development of fault localization, we find that techniques in some prototype systems
work only for programs with restricted structure and solve only limited problems. An efficient debugging
paradigm that deals with a broader scope of faults is needed.

2.1 Background

The tasks performed in the process of debugging are to collect valuable information for locating faults.
The information may come from program specification, program behavior during execution, results of
program execution, test cases after testing, etc. Because deterministic decisions (the general approach
that systematically analyzes complicated information to benefit debugging) do not yet exist, we adopt a
heuristic approach to gather useful information for different cases. We believe that heuristics can cover
varied situations and help us localize faults.

Dynamic Program Slicing can determine statements actually affecting program failures so that the search
domain for faults will be reduced. Although it is not guaranteed that dynamic slices always contain the
faults (e.g., missing statement or specification faults), to investigate statements actually affecting program
failures is a reasonable strategy in debugging. By analyzing semantics and values of variables in suspicious
statements of dynamic slices, we might discover valuable information for debugging. Therefore, we choose
dynamic slices as the search domain to locate faults.

We have developed a family of heuristics to further reduce the search domain based on the dynamic
slices provided by Spyder and on information obtained from testing. Each heuristic will suggest a set of
suspicious statements whose size is usually smaller than the size of the dynamic slices. Although each of
our proposed heuristics is only suitable for some specific kinds of faults, the overall debugging power from
uniting these heuristics is expected to surpass that of currently used debugging tools.

In the testing phase, multiple test cases running against program P present different kinds of information.
Our goal is to extract that information as much as possible for debugging. The more test cases we get, the
better results we might have by investigating the information obtained from testing. Therefore, we prefer
a thorough test — to finish the whole testing process to satisfy as many criteria of a selected testing method
as possible. After a thorough test, if the existence of faults in program P is detected, then at least one test
case can cause P to fail. These test cases are called error–revealing test cases, Td. Likewise, the test cases
on which P generates correct results are called non–error–revealing test cases, Tu. Analyzing the results
of program failures will help identify suspicious variables (e.g., output variables) that contain unexpected
values. Dynamic slices with respect to these suspicious variables and corresponding test cases are then
constructed for the heuristics.

A dynamic slice Dyn(P; v; l; t) contains four parameters: the target program P , a given variable v,
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the location of v (l), and a given test case t. We define two metrics, inclusion frequency and influence
frequency. Inclusion frequency of a statement is the number of distinct dynamic slices containing the
statement; influence frequency of a statement in a Dyn(P; v; l; t) is the number of times the statement was
visited in Dyn(P; v; l; t). By varying either or both of the test case (t) and the variable (v) parameters,
we can get different kinds of dynamic slices that are used to determine corresponding metrics. Then,
heuristics are applied based on the dynamic slices and metrics obtained. At this moment, the effectiveness
of heuristics for automatic fault localization under different program (P ) or location (l) parameters is not
clear to us, but is the subject of ongoing research. [34]

Notations and terminology used in our heuristics are listed in Appendix A.

2.2 Heuristics

Several heuristics for fault localization based on dynamic slices are proposed here. Heuristics constructed
using different test case parameters are similar to those constructed using different variable parameters.
However, to vary the variable parameter we must be able to verify the value of a given variable with regard
to the given location and test case. Because the error–revealing and non–error–revealing test case sets are
obtained directly from a thorough test, it is preferred to first employ heuristics based on different test case
parameters. In order to explain the heuristics clearly, we first illustrate heuristics using the notations of
different test case parameters (Heuristics 1 to 16). These heuristics can be applied to cases of different
variable parameters, and another sixteen similar heuristics will be obtained (Heuristic 17). Then, three
more heuristics (Heuristics 18 to 20) are proposed based on varying both test case and variable parameters.
For clarity and simplicity, the proposed heuristics are primarily developed by assuming only one fault in a
failed program. However, many heuristics are still suitable for the case of multiple faults.

Heuristic 1 Indicate statements in f
SjTuj
i=1 Dyn(P; v; l; Tui) g

S
f
SjTdj
i=1 Dyn(P; v; l; Tdi) g. 2

Statements in dynamic program slices with respect to all test cases (both non–error–revealing and
error–revealing test cases) are highlighted. This heuristic covers all statements in all available dynamic
slices.

Heuristic 2 Indicate statements in
SjTuj
i=1 Dyn(P; v; l; Tui). 2

This heuristic makes users focus on statements in dynamic program slices with respect to the non–error–
revealing test cases (Tu). Faulty statements could be in these statements, if the fault is not triggered or not
propagated to the result. These statements will be used by other heuristics.

Heuristic 3 Indicate statements with low inclusion frequency in
SjTuj
i=1 Dyn(P; v; l; Tui). 2

A statement frequently involved with correct results has less chance to be faulty. When there exist
many non–error–revealing test cases (Tu) and very few error–revealing test cases (Td), this heuristic can be
employed to find faulty statements in

SjTuj
i=1 Dyn(P; v; l; Tui). The faulty statements, if any exist2, would

not lead P to wrong results when executing test cases in Tu.

Heuristic 4 Indicate statements in f
SjTuj
i=1 Dyn(P; v; l; Tui) g

S
f
SjTdj
i=1 Dyn(P; v; l; Tdi) g with low

(including zero) inclusion frequency that is counted according to the non–error–revealing test cases (Tu). 2

2Failures may also be caused by missing statements. This issue is briefly discussed in Section 4.3.
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This is a modification of Heuristic 3. Statements not in
SjTuj
i=1 Dyn(P; v; l; Tui) but in

SjTdj
i=1 Dyn(P; v; l; Tdi) will also be considered, and the inclusion frequency of these statements counted

based on Tu is simply zero. The idea behind this heuristic is that faulty statements might never be executed
when P is executed against test cases in Tu. Thus, this approach is more flexible than Heuristic 3 and
would highlight more suspicious statements than Heuristic 3 does.

Heuristic 5 Indicate statements in
TjTuj
i=1 Dyn(P; v; l; Tui), if the intersection is not an empty set. Then,

study the necessity of the statements for correct results. 2

This heuristic will indicate statements with the highest inclusion frequency in
SjTuj
i=1 Dyn(P; v; l; Tui)

of Heuristic 2, if the intersection is not an empty set. Studying the necessity of the statements that are
inevitable in getting correct results might help us understand the nature of faults. This heuristic highlights
exactly these statements. On the other hand, we could ignore these statements because they always lead to
correct results, and focus on other statements also suggested by Heuristic 1.

Heuristic 6 Indicate statements in
SjTdj
i=1 Dyn(P; v; l; Tdi). 2

This heuristic makes users focus on all statements in dynamic program slices with respect to the
error–revealing test cases (Td).

Heuristic 7 Indicate statements with high inclusion frequency in
SjTdj
i=1 Dyn(P; v; l; Tdi). 2

A statement often leading to incorrect results has more chance to be faulty, and errors are con-
fined to the statements executed. When there exist many error–revealing test cases (Td) and very
few non–error–revealing test cases (Tu), this heuristic can be employed to find the faulty statements in
SjTdj
i=1 Dyn(P; v; l; Tdi).

Heuristic 8 Indicate statements in
TjTdj
i=1 Dyn(P; v; l; Tdi), if the intersection is not an empty set. 2

This heuristic will indicate statements with the highest inclusion frequency in
SjTdj
i=1 Dyn(P; v; l; Tdi)

of Heuristic 7, if the intersection is not an empty set. If P has a few faults that commonly cause program
failures, then this heuristic could locate the faulty statements quickly, especially when P has only one faulty
statement (single fault).

Heuristic 9 Indicate statements in the difference set of
SjTdj
i=1 Dyn(P; v; l; Tdi) and

SjTuj
i=1 Dyn(P; v; l; Tui):

f
SjTdj
i=1 Dyn(P; v; l; Tdi) g � f

SjTuj
i=1 Dyn(P; v; l; Tui) g. 2

Statements involved in the execution of program failures but never tested by cases in Tu (i.e., statements
only appearing in the dynamic slices with respect to error–revealing test casesTd) are highly likely to contain
faults. If there are many test cases in both Td and Tu, this method is worth trying. Statements indicated by
this heuristic are in the difference set between the results of Heuristic 6 and Heuristic 2 (H6� H2).

Heuristic 10 Indicate statements in the difference set of
TjTdj
i=1 Dyn(P; v; l; Tdi) and

SjTuj
i=1 Dyn(P; v; l; Tui):

f
TjTdj
i=1 Dyn(P; v; l; Tdi) g � f

SjTuj
i=1 Dyn(P; v; l; Tui) g. 2
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This heuristic is similar to, but more rigorous than, Heuristic 9 because statements only executed by
all test cases in Td are considered. This heuristic indicates statements appearing in every dynamic slices of
error–revealing test cases (failures) but not in any dynamic slices of non–error–revealing test cases (correct
results). Nevertheless, this difference set (H8� H2) might be empty.

Heuristic 11 Indicate statements in the difference set of
SjTuj
i=1 Dyn(P; v; l; Tui) and

SjTdj
i=1 Dyn(P; v; l; Tdi):

f
SjTuj
i=1 Dyn(P; v; l; Tui) g � f

SjTdj
i=1 Dyn(P; v; l; Tdi) g. 2

When P is executed against the non–error–revealing test cases (Tu), some statements might always be
included to get correct results. Moreover, these statements never lead to the incorrect result. Further
dependency analysis on these statements may provide useful information for locating faults. This heuristic
can indicate these statements by finding the difference set between results of Heuristic 2 and Heuristic 6
(H2 � H6). However, we might ignore these statements because they often contribute to correct results,
and focus on other statements also suggested by Heuristic 1.

Heuristic 12 Indicate statements in the difference set of
TjTuj
i=1 Dyn(P; v; l; Tui) and

SjTdj
i=1 Dyn(P; v; l; Tdi):

f
TjTuj
i=1 Dyn(P; v; l; Tui) g � f

SjTdj
i=1 Dyn(P; v; l; Tdi) g. 2

This heuristic is similar to, but more rigorous than, Heuristic 11 because statements only executed by
all test cases in Tu are considered. This heuristic indicates statements appearing in every dynamic slices of
non–error–revealing test cases (correct results) but not in any dynamic slices of error–revealing test cases
(failures). Nevertheless, the difference set (H5� H6) might be empty.

Heuristic 13 Indicate statements in f
SjTuj
i=1 Dyn(P; v; l; Tui) g

S
f
SjTdj
i=1 Dyn(P; v; l; Tdi) g with high

inclusion frequency in
SjTdj
i=1 Dyn(P; v; l; Tdi) and low inclusion frequency in

SjTuj
i=1 Dyn(P; v; l; Tui).

2

This heuristic is a combination of Heuristics 3 and 7. It is suitable when many statements are involved
in
SjTdj
i=1 Dyn(P; v; l; Tdi) as well as

SjTuj
i=1 Dyn(P; v; l; Tui), and many elements are in Td and Tu after a

thorough test. Statements leading to incorrect results and less involved in the correct program execution
are highly likely to contain bugs. For such statements, the ratio of the corresponding inclusion frequency
in
SjTdj
i=1 Dyn(P; v; l; Tdi) to the corresponding inclusion frequency in

SjTuj
i=1 Dyn(P; v; l; Tui) is a useful

indicator. The higher ratio a statement has, the higher chance the statement contains faults.

Heuristic 14 If a set of statements B1 located by the above heuristics, especially by those indicating
statements with low inclusion frequency in

SjTuj
i=1 Dyn(P; v; l; Tui) (e.g., Heuristics 3, 4, and 13), does not

contain faults and belongs to a branch of a decision block such as if (exp) then f: : :B1 : : :g elseB2,
or while (exp) f: : :B1 : : :g, then the logical expression exp should be examined. 2

Because the logical expression exp is always executed to decide whether B1 should be executed,
inclusion frequency of the predicate statement (if–statement or while–statement) is always equal to or
greater than that of B1. The indication of the predicate statement based on inclusion frequency is thus
not as effective as B1. This heuristic reminds users to examine logical expression exp in the predicate
statement.
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Heuristic 15 Indicate statements with high influence frequency in a Dyn(P; v; l; Td). 2

The influence frequency measures the effect of statements being executed more than once (e.g., in a
loop) but not counted in the inclusion frequency. The logic behind this heuristic is the same as that behind
Heuristic 7 — statements often contributing to incorrect results are more likely to be faulty.

Heuristic 16 Indicate statements with low influence frequency in a Dyn(P; v; l; Tu). 2

This heuristic, in other words, excludes statements with high influence frequency in the
Dyn(P; v; l; Tu) because statements often leading to correct results are less likely to be faulty.

Heuristic 17 Based on the above heuristics, another sixteen similar heuristics can be obtained by only
varying the variable parameter (instead of different test case parameters) with respect to the givenP , l, and
t. 2

In these cases, we must be able to verify the value of suspicious variables with respect to the given
location (l) and test case (t) in order to construct Vd (having incorrect value) and Vu (having correct value).
These sixteen new heuristics indicate potential faulty statements based on another feature of dynamic slices
(the variable parameter).

Heuristic 18 Indicate statements in
TjVdj
j=1 Stmt(P; Vdj ; l; TX), where TX represents a selected test case

in Td or Tu, Stmt(P; v; l; TX) is the set of statements suggested by one of Heuristics 1 to 16, and Vd is
mentioned in Heuristic 17. 2

The idea behind this heuristic is similar to that behind Heuristic 8. If wrong variable values are caused
by the same fault, statements indicated by this heuristic are suspicious.

Heuristic 19 Indicate statements in f
SjVdj
j=1 Stmt(P; Vdj ; l; TX) g � f

SjVuj
j=1 Stmt(P; Vuj ; l; TX) g. 2

This heuristic is derived from Heuristic 9 with information obtained from varying both variable and test
case parameters.

Heuristic 20 Indicate statements in f
TjVdj
j=1 Stmt(P; Vdj ; l; TX) g � f

SjVuj
j=1 Stmt(P; Vuj ; l; TX) g. 2

This heuristic is derived from Heuristics 10 and 19.

More specific criteria of applying these heuristics have yet to be studied. For example, the threshold
for statements with high inclusion frequency in

SjTdj
i=1 Dyn(P; v; l; Tdi) could be suggested as the highest

twenty percent statements in the union sorted by inclusion frequency. Users are allowed to set their own
threshold for different purposes. Our preliminary study discovers a better way to decide the threshold. The
suggestion is discussed in Section 4.3.

Heuristics and experiments according to relational (decision–to–decision) path analysis on execution
paths were studied by Collofello and Cousins [12]. A few of their approaches are similar to ours, such as
the concept behind Heuristic 13, the most useful one among theirs. As our approach, at this moment, allows
users to vary two out of four parameters (variable and test case) of dynamic slices that contain statements
actually affecting program failures, possible faulty statements suggested by our heuristics should be more
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Figure 1: The family tree of the proposed Heuristics 1 to 16

precise than those suggested by theirs and other approaches. Also, more information is provided by our
heuristics.

With the aid of our heuristics, a reduced search domain for faults (e.g., a smaller set of suspicious
statements) is anticipated. Other functions of dynamic instrumentation provided by Spyder will then help
us manage further examination. For instance, the reaching definition, which shows the latest definition of a
variable and is a subset of the def–use chain in program dependency analysis, enables us to trace back to find
the place where a suspicious variable went wrong. Then, the backtrack function effectively “executes” a
program in reverse until a preset breakpoint is reached, just like forward program execution being suspended
at breakpoints. In short, an efficient debugging session is conducted by locating faults from a reduced
domain via our heuristics as well as by using effective functions of dynamic instrumentation.

3 Further Analysis

We have constructed a family of heuristics to study effective algorithms for applying the heuristics. In this
family, relationships among the heuristics and the potential order of using them were explored.

We first examined heuristics with different test case parameters (Heuristics 1 to 16) by constructing
the family tree in Figure 1. The same argument based on Figure 1 can then be applied to heuristics with
different variable parameters (indicated in Heuristic 17). In Figure 1, each node represents one heuristic.
A solid line connects an upper (parent) and a lower (child) nodes with a superset–subset relationship that
statements indicated by the parent (upper) node contain those of the child (lower) node. A dotted line
links an upper node and a lower node that is derived from the upper node but without a superset–subset
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relationship. Bold nodes are heuristics that require thresholds, and dot (intermediate) nodes are heuristics
derived from others to construct a complete family tree. Statements highlighted by heuristics within the
intermediate nodes only give us basic information for debugging. By contrast, their descendant heuristics
will provide more helpful information. Among the intermediate nodes, Heuristic 1 (H1) is the root of the
family tree, Heuristic 2 (H2) is the root of a subtree with respect to non–error–revealing test cases, and
Heuristic 6 (H6) is the root of a subtree with respect to error–revealing test cases. H14 can be applied after
traversing other heuristics in the tree except H15 and H16.

Heuristics of the subtree rooted by H2 are based on dynamic slices with respect to non–error–revealing
test cases). These heuristics, especially H5, H12, and H11, are different from others because they highlight
statements that often lead to correct results and suggest studying the necessity of the statements for correct
results. However, we can ignore these statements and focus on other statements involved in the family tree
(i.e., statements suggested by Heuristic 1). In this case, H5, H12, and H11 represent the corresponding
compliment heuristics.

As heuristics H1 to H14 are based on all dynamic slices with respect to error–revealing and/or non–
error–revealing test cases, their functions are interpreted as global analysis. On the other hand, H15 and
H16 conduct local analysis because they are based on one dynamic slice at a time. We prefer to perform
global analysis first. Local analysis is then conducted to reduce the search domain further to locate faulty
statements.

According to the family tree in Figure 1, heuristics without threshold requirements (especially for the
nonintermediate nodes) are preferred before those with threshold requirements. This is because the former
suggest a precise set of statements and the latter indicate a different set of statements for different thresholds.
For a pair of nodes with a superset–subset relationship, the parent heuristic can be evaluated first because
the child heuristic conducts analysis based on the result of the parent heuristic analysis (e.g., H5/H12 and
H8/H10).

From the above discussion, global analysis can be summarized as:

Group 1: applying heuristics in nonintermediate nodes — H8/H10, H9, H5/H12, H11, H5/H12, and H11.

Group 2: applying heuristics with threshold requirements — H4, H3, H7, and H13. Search domains
provided by heuristics in this group contain less statements than those provided by heuristics in
Group 1. The top–down order of employing these heuristics are preferred because the results of
upper nodes will be used by lower nodes. For each heuristic, we should try the strictest threshold
first. If faulty statements are not in the suggested region, the threshold will be increased gradually
and the search domain will be expanded accordingly.

Group 3: applying H14 to recheck some suspicious statements that are ignored by the above heuristics.

While traversing the family tree, we interpret the top–down steps as refining suspicious statements and the
bottom–up steps as extending the search domain. Users can make a guess first to get a set of suspicious
statements for examination. Then, our tool will help them refine or extend the search domain by traversing
the family tree of heuristics.

The result of global analysis is a set of suspicious statements (a reduced search domain) based on
dynamic slices. To further verify faulty statements, heuristics performing local analysis (e.g., H15 and
H16) are employed based on one dynamic slice at a time. Statements indicated by both global and local
analyses are first examined, then the other highlighted statements.
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Program # of executable blocks decisions p-uses fault types
statements

aveg 35 36 18 40 wrong logical expression

calend 29 22 10 16 wrong logical operator

find1 33 32 18 80 wrong variable reference

find2 33 32 18 80 wrong variable reference

find3 32 32 18 80 missing a statement &
faults of find1 and find2

gcd 57 57 36 124 wrong initialization (value)

naur1 37 28 18 48 missing simple logical expression

naur2 37 28 18 50 missing simple logical expression

naur3 36 28 18 46 missing predicate statement

transp 155 156 73 135 wrong initialization (value)

trityp 37 47 39 99 wrong logical operator

Table 1: Tested programs

Techniques and steps discussed above can be applied to heuristics with different variable parame-
ters (indicated in Heuristic 17) as well as to heuristics with different test case and variable paramenters
(Heuristics 18 to 20).

After a reduced search domain for faults is presented by our proposed heuristics, further analysis is
needed to identify whether faulty statements are in the highlighted suspicious region. Ongoing research
will provide automated decision support to do verification. [42]

4 Results of A Preliminary Study

A simple trial was conducted to examine the effectiveness of the heuristics proposed. Because the major
goal of fault localization is to reduce the search domain containing faults, the effectiveness was analyzed by
comparing the known faulty statements and the suspicious domains suggested by heuristics for each tested
program. In this section, we discuss the selection of tested programs, the results obtained from applying
the heuristics.

4.1 Tested Programs

Eleven test programs were selected and constructed based on seven programs. Most of these programs
were collected from previous studies and are well–known experimental programs with previously studied
faults.3

Table 1 gives the size and complexity of each tested program. The first column lists the number of
executable statements, showing the size of a tested program. Columns 3 to 5 are obtained from a data flow
coverage testing tool — Atac (Automatic Test Analysis for C programs) [22], developed at Bellcore. The
following definitions are quoted from the man pages of Atac.

Column blocks represents the number of code fragments not containing control flow branching.
Column decisions shows the number of pairs of blocks for which the first block ends at a control

3The programs are described in Appendix B.
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Prog. t.c. types % blocks % decisions % p-uses % all-uses

aveg Tu 100 (36) 100 (18) 73 (29/40) 81 (64/79)
Td 100 (36) 94 (17/18) 70 (28/40) 77 (61/79)

calend Tu 100 (22) 90 (9/10) 94 (15/16) 97 (30/31)
Td 91 (20/22) 60 (6/10) 69 (11/16) 74 (23/31)

find1 Tu 100 (32) 100 (18) 79 (63/80) 84 (104/124)
Td 97 (31/32) 94 (17/18) 76 (61/80) 82 (102/124)

find2 Tu 100 (32) 100 (18) 79 (63/80) 84 (104/124)
Td 97 (31/32) 94 (17/18) 74 (59/80) 81 (100/124)

find3 Tu 100 (32) 100 (18) 80 (64/80) 85 (104/122)
Td 97 (31/32) 94 (17/18) 75 (60/80) 80 (98/122)

gcd Tu 100 (57) 89 (32/36) 69 (85/124) 71 (163/230)
Td 95 (54/57) 81 (29/36) 64 (79/124) 67 (153/230)

naur1 Tu 100 (28) 100 (18) 65 (31/48) 66 (53/80)

Td 96 (27/28) 89 (16/18) 56 (27/48) 61 (49/80)

naur2 Tu 100 (28) 100 (18) 66 (33/50) 67 (55/82)
Td 100 (28) 100 (18) 62 (31/50) 65 (53/82)

naur3 Tu 100 (28) 100 (18) 70 (32/46) 69 (54/78)
Td 100 (28) 100 (18) 78 (36/46) 79 (62/78)

transp Tu 94 (146/156) 89 (65/73) 81 (110/135) 85 (307/361)
Td 96 (150/156) 90 (66/73) 79 (107/135) 84 (304/361)

trityp Tu 98 (46/47) 97 (38/39) 76 (75/99) 78 (88/113)
Td 66 (31/47) 51 (20/39) 37 (37/99) 39 (44/113)

Table 2: Atac’s measurement of test case adequacy

flow branch and the second block is a target of one of these branches. Columnp–uses (predicate
uses) indicates the number of triples of blocks for which the first block contains an assignment
to a variable, the second block ends at a control flow branch based on a predicate containing
that variable, and the third block is a target of one of these branches. Column all–uses is the
sum of p–uses and pairs of blocks for which the first block contains an assignment to a variable
and the second block contains a use of that variable that is not contained in a predicate.

The data flow coverage criteria (columns 3 to 5) help us understand the complexity of a tested program.
Fault types of each tested program are presented in Column 6. Most of the tested programs have only one
fault so that we can easily examine the effectiveness of our proposed heuristics for fault localization.

4.2 Results

As mentioned in Section 2.1, a thorough test is preferred before applying our proposed heuristics. Atac was
used to conduct the thorough test and to construct two test case sets, non–error–revealing test case set Tu
and error–revealing test case set Td. A set of data–flow criteria of a selected program is provided after the
tested program is analyzed by Atac (e.g., blocks, decisions, p–uses, and all–uses). Each test case satisfies
the criteria to a certain degree when executed against the tested program. Summary of the satisfaction
degree presented in Table 2 consists of both percentage and counts of all four criteria to show the adequacy
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Prog. H1 H2 H6 H8 H10 H9
aveg a 80% (28=35)� 80% (28=35)� 80% (28=35)� 66% (23=35)� ; ;

b (28)� 100% (28=28)� 100% (28=28)� 83% (23=28)� ; ;

calend a 80% (23=29)� 80% (23=29)� 76% (22=29)� 25% (7=29)� ; ;

b (23)� 100% (23=23)� 96% (22=23)� 31% (7=23)� ; ;

find1 a 76% (25=33)� 76% (25=33)� 76% (25=33)� 73% (24=33)� ; ;

b (25)� 100% (25=25)� 100% (25=25)� 96% (24=25)� ; ;

find2 a 76% (25=33)� 76% (25=33)� 76% (25=33)� 67% (22=33)� ; ;

b (25)� 100% (25=25)� 100% (25=25)� 88% (22=25)� ; ;

find3 a 75% (24=32)� 75% (24=32)� 75% (24=32)� 66% (21=32)� ; ;

b (24)� 100% (24=24)� 100% (24=24)� 88% (21=24)� ; ;

gcd a 69% (39=57)� 67% (38/57) 64% (36=57)� 20% (11=57)� 2% (1=57)� 2% (1=57)�

b (39)� 98% (38/39) 93% (36=39)� 29% (11=39)� 3% (1=39)� 3% (1=39)�

naur1 a 84% (31=37)� 84% (31=37)� 84% (31=37)� 68% (25=37)� ; ;

b (31)� 100% (31=31)� 100% (31=31)� 81% (25=31)� ; ;

naur2 a 84% (31=37)� 84% (31=37)� 84% (31=37)� 68% (25=37)� ; ;

b (31)� 100% (31=31)� 100% (31=31)� 81% (25=31)� ; ;

naur3 a 84% (30/36) 84% (30/36) 84% (30/36) 75% (27/36) ; ;

b (30) 100% (30/30) 100% (30/30) 90% (27/30) ; ;

transp a 30% (45=155)� 29% (44/155) 20% (31=155)� 19% (29=155)� 1% (1=155)� 1% (1=155)�

b (45)� 98% (44/45) 69% (31=45)� 65% (29=45)� 3% (1=45)� 3% (1=45)�

trityp a 57% (21=37)� 57% (21=37)� 41% (15=37)� 28% (10=37)� ; ;

b (21)� 100% (21=21)� 72% (15=21)� 48% (10=21)� ; ;

�: the highlighted statements contain faulty statements
a: # of highlighted statements / # of executable statements
b: # of highlighted statements / # of statements highlighted by H1

Table 3: Effectiveness analysis for heuristics without threshold requirements

of selected test cases. Atac was employed to satisfy the coverage of criteria as much as possible and to
guarantee adequacy. In our experiment, test cases in Tu were added to improve the satisfaction degree
without causing program failure. Test cases in Td were added to improve the satisfaction degree under
program failure. Information presented in Table 2 contains the highest percentage that were reached by the
selected test cases.

Our heuristics were then applied based onTu, Td, and output variables of tested programs using Spyder.
A set of suspicious statements was suggested by each heuristic for a selected program. To measure the
effectiveness of a proposed heuristic, we first examined whether the known faulty statements were contained
by the suggested statements. Then, we compared the reduced domain with the size of the original tested
program (i.e., the number of executable statements) and with the domain suggested by the root of the
heuristic family in Figure 1 (i.e., H1). These results are presented in Rows a and b of Tables 3 and 4.
The percentage of each entry in the tables tells the degree of effectiveness for the reduced search domain.
The star superscript in an entry indicates the suggested statements containing the known faulty statements.
Thus, heuristics with low promising percentage (especially in Row b) are preferred, except for H5, H12,
and H11.
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Prog. H5 H12 H11 H5 H12 H11
aveg a 60% (21=35)� ; ; 20% (7/35) 80% (28=35)� 80% (28=35)�

b 75% (21=28)� ; ; 25% (7/28) 100% (28=28)� 100% (28=28)�

calend a 14% (4/29) ; 4% (1/29) 66% (19=29)� 80% (23=29)� 76% (22=29)�

b 18% (4/23) ; 5% (1/23) 83% (19=23)� 100% (23=23)� 96% (22=23)�

find1 a 46% (15/33) ; ; 31% (10=33)� 76% (25=33)� 76% (25=33)�

b 60% (15/25) ; ; 40% (10=25)� 100% (25=25)� 100% (25=25)�

find2 a 49% (16/33) ; ; 28% (9=33)� 76% (25=33)� 76% (25=33)�

b 64% (16/25) ; ; 36% (9=25)� 100% (25=25)� 100% (25=25)�

find3 a 60% (19=32)� ; ; 16% (5=32)� 75% (24=32)� 75% (24=32)�

b 80% (19=24)� ; ; 21% (5=24)� 100% (24=24)� 100% (24=24)�

gcd a 25% (14/57) 4% ( 2/57) 6% ( 3/57) 44% (25=57)� 65% (37=57)� 64% (36=57)�

b 36% (14/39) 6% ( 2/39) 8% ( 3/39) 65% (25=39)� 95% (37=39)� 93% (36=39)�

naur1 a 9% (3/37) ; ; 76% (28=37)� 84% (31=37)� 84% (31=37)�

b 10% (3/31) ; ; 91% (28=31)� 100% (31=31)� 100% (31=31)�

naur2 a 9% (3/37) ; ; 76% (28=37)� 84% (31=37)� 84% (31=37)�

b 10% (3/31) ; ; 91% (28=31)� 100% (31=31)� 100% (31=31)�

naur3 a 9% (3/36) ; ; 75% (27/36) 84% (30/36) 84% (30/36)
b 10% (3/30) ; ; 90% (27/30) 100% (30/30) 100% (30/30)

transp a 27% (41/155) 10% (14/155) 10% (14/155) 3% (4=155)� 20% (31=155)� 20% (31=155)�

b 92% (41/45) 32% (14/45) 32% (14/45) 9% (4=45)� 69% (31=45)� 69% (31=45)�

trityp a 9% (3/37) ; 17% (6/37) 49% (18=37)� 57% (21=37)� 41% (15=37)�

b 15% (3/21) ; 29% (6/21) 86% (18=21)� 100% (21=21)� 72% (15=21)�

�: the highlighted statements contain faulty statements
a: # of highlighted statements / # of executable statements
b: # of highlighted statements / # of statements highlighted by H1

Table 3: (continued) Effectiveness analysis for heuristics without threshold requirements

As discussed in Section 3, heuristics without threshold requirements should be applied before heuristics
with the requirements. Results of applying heuristics without threshold requirements are presented in
Table 3. Heuristics 1, 2, and 6 are considered separately because they are intermediate nodes in Figure 1,
and search domains highlighted by H2 and H6 are not significantly reduced from the domain provided by
H1. We are more interested in other heuristics in Table 3.

For those entries with an empty set (;), the related heuristics do not indicate any suspicious statements
for fault localization and can be ignored. If an empty set is provided by H5, H12, or H11, the corresponding
compliment heuristic (H5, H12, or H11) will also be ignored because the search domain indicated by the
compliment heuristic has the same size as the one suggested by H1. Because of the features of H5, H12,
and H11 as mentioned in Section 3, these heuristics and their complement heuristics will be considered to
find effective methods of applying them. For instance, the high percentage in Row b of H5 for program
transp indicates the suggested domain is not reduced enough. Thus the domain suggested by H5 should
be examined first because of its small size. The low percentage in Row b of H12 and H11 for program
gcd precisely indicates very few statements for correct results, and the semantics of these statements help
us realize faults in the tested program. Thus H12 and H11 will be ignored because of their corresponding
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Prog. H3 H4 H7 H13 H14

aveg a 80% (28=35)� 80% (28=35)� 66% (23=35)� 72% (25=35)� 26% (9=35)�

b 100% (28=28)� 100% (28=28)� 83% (23=28)� 90% (25=28)� 33% (9=28)�

c 100% (3=3)� 100% (3=3)� 34% (1=3)� 67% (2=3)� �

calend a 59% (17=29)� 59% (17=29)� 25% (7=29)� 25% (7=29)� 11% (3=29)�

b 74% (17=23)� 74% (17=23)� 31% (7=23)� 31% (7=23)� 14% (3=23)�

c 40% (2=5)� 40% (2=5)� 34% (1=3)� 29% (2=7)� �

find1 a 31% (10=33)� 31% (10=33)� 73% (24=33)� 28% (9=33)� 28% (9=33)�

b 40% (10=25)� 40% (10=25)� 96% (24=25)� 36% (9=25)� 36% (9=25)�

c 67% (2=3)� 67% (2=3)� 50% (1=2)� 50% (2=4)� �

find2 a 13% (4=33)� 13% (4=33)� 67% (22=33)� 13% (4=33)� 28% (9=33)�

b 16% (4=25)� 16% (4=25)� 88% (22=25)� 16% (4=25)� 36% (9=25)�

c 50% (2=4)� 50% (2=4)� 34% (1=3)� 25% (1=4)� �

find3 a 13% (4=32)� 13% (4=32)� 66% (21=32)� 13% (4=32)� 29% (9=32)�

b 17% (4=24)� 17% (4=24)� 88% (21=24)� 17% (4=24)� 38% (9=24)�

c 50% (2=4)� 50% (2=4)� 34% (1=3)� 40% (2=5)� �

gcd a 67% (38/57) 2% (1=57)� 20% (11=57)� 2% (1=57)� 30% (17/57)
b 98% (38/39) 3% (1=39)� 29% (11=39)� 3% (1=39)� 44% (17/39)
c 100% (5/5) 17% (1=6)� 15% (1=7)� 12% (1=9)� N/A

naur1 a 76% (28=37)� 76% (28=37)� 68% (25=37)� 63% (23=37)� 17% (6=37)�

b 91% (28=31)� 91% (28=31)� 81% (25=31)� 75% (23=31)� 20% (6=31)�

c 75% (3=4)� 75% (3=4)� 50% (1=2)� 60% (3=5)� �

naur2 a 76% (28=37)� 76% (28=37)� 68% (25=37)� 60% (22=37)� 17% (6=37)�

b 91% (28=31)� 91% (28=31)� 81% (25=31)� 71% (22=31)� 20% (6=31)�

c 75% (3=4)� 75% (3=4)� 50% (1=2)� 20% (1=5)� �

naur3 a 9% ( 3/36) 9% ( 3/36) 84% (30/36) 9% ( 3/36) 14% ( 5/36)
b 10% ( 3/30) 10% ( 3/30) 100% (30/30) 10% ( 3/30) 17% ( 5/30)
c 50% (2/4) 50% (2/4) 100% (4/4) 50% (2/4) �

transp a 30% (45/155) 1% (1=155)� 19% (29=155)� 1% (1=155)� 24% (36/155)
b 100% (45/45) 3% (1=45)� 65% (29=45)� 3% (1=45)� 80% (36/45)
c 100% (3/3) 25% (1=4)� 50% (1=2)� 20% (1=5)� N/A

trityp a 28% (10=37)� 28% (10=37)� 28% (10=37)� 11% (4=37)� 30% (11=37)�

b 48% (10=21)� 48% (10=21)� 48% (10=21)� 20% (4=21)� 53% (11=21)�

c 38% (3=8)� 38% (3=8)� 34% (1=3)� 25% (2=8)� �

�: the highlighted statements contain faulty statements
a: # of highlighted statements / # of executable statements
b: # of highlighted statements / # of statements highlighted by H1
c: rank of the critical level / # of ranked levels
� : not effective enough

Table 4: Effectiveness analysis for heuristics with critical threshold requirements
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high percentages.
Heuristics with threshold requirements are presented in Table 4. Statements involved in a heuristic

with threshold requirements are first ranked according to the metric used by the heuristic (e.g., inclusion
frequency) and are then grouped based on the ranks (i.e., statements with the same rank are in one group).
Among different groups, the rank associated with a group that contains the fault is referred to as the critical
level. The threshold of the heuristic should at least be set at the critical level to assure the suggested domain
containing faults. This minimal threshold is referred to as the critical threshold. After the critical level is
decided, suspicious statements are thus highlighted by the heuristic.

In Table 4, Rows c and b are the critical thresholds: the ratio of the rank of the critical level to
the number of ranked levels and the ratio of suspicious statements within and below the critical level to
statements involved in the heuristic (i.e., statements highlighted by H1), respectively. If faulty statements
do not belong to any statements involved in the heuristic, the critical threshold will be 100% (e.g., the entry
of H3 for Rows b and c of program transp in Table 4).

We use the entry of H3 (indicating statements with low inclusion frequency in
SjTuj
i=1 Dyn(P; v; l; Tui))

on program calend as an example for further illustration. Five groups with different inclusion frequency
are obtained from

SjTuj
i=1 Dyn(P; v; l; Tui)) on calend: the first group (ranked 1) has the lowest inclusion

frequency 1 and contains eight statements; the second group (ranked 2) contains nine statements with
inclusion frequency 2; the third group (ranked 3) contains one statement with inclusion frequency 3; the
fourth group (ranked 4) contains one statement with inclusion frequency 4; and the fifth group (ranked 5)
contains four statement with inclusion frequency 5. The faulty statement (Statement 30) is in the second
group. Thus, the critical level of H3 on calend is 2 (i.e., associated with the second group), and those
seventeen statements (including the faulty one) in the first (having eight statements) and second (having
nine statements) groups are highlighted. We then decide the critical threshold in Row c based on the ranks
(the ratio of the rank of the critical level to the total number of ranked levels — 2/5) and the the critical
threshold in Row b based on the statements (the ratio of suspicious statements within and below the critical
level to statements suggested by H1 — 17/23).

Heuristic 14 is designed to enhance the location of faults in the predicate expression when other heuristics
are not effective enough. Because H14 would consider results of other heuristics, a precise critical threshold
is hard to define for it. In Table 4, Rows a and b for H14 indicate the number of predicate statements
in a tested program divided by the number of the executable statements and the number of the statements
highlighted by H1, respectively. Row c tells the effectiveness of using H14 to locate faulty predicate
statements. “N/A” means that this heuristic is not applicable because faults of the corresponding tested
program are not in predicate statements. “�” means that the faulty predicate statements can be located
by using this heuristic combined with other heuristics. If this heuristic does not provide more effective
information than other heuristics do for locating faulty predicate statements, “�” is marked in the entry.

4.3 Discussion

The determination of thresholds for heuristics with this requirement (e.g., H3, H4, H7, and H13) will affect
the effectiveness and size of suggested domains. A unique threshold, which makes the suggested domain
reasonably small and consistently contain faults, is highly desirable. In Table 4, critical thresholds for
various heuristics in Row b range from 1% to 91%. A standard threshold cannot be decided within this
wide scope. On the other hand, we find that most critical thresholds in Row c are below 50%. Moreover,
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thresholds based on ranked levels are easy to use (e.g., from the first to the last ranked level, gradually).
Therefore, we conclude to choose thresholds based on ranked levels and using the first 50% of ranked levels
as a standard threshold for the first–time criterion when employing these heuristics.

By comparing the size and percentage of search domains suggested by heuristics for each tested program,
we found that for most cases the domains provided by heuristics with threshold requirement are more precise
than those provided by heuristics without this requirement. Therefore, we prefer to examine the search
domains suggested by heuristics with threshold requirements first (i.e., H4, H3, H7, and H13), although extra
effort is needed to decide the critical thresholds. From Tables 3 and 4 it is hard to conclude which heuristic
is the most effective one. Also it is not appropriate to make this conclusion because these heuristics are
proposed to handle different situations. Program behavior and type of faults would affect the effectiveness
of these heuristics. We can only provide a general approach to apply these heuristics.

For some types of faults (e.g., missing assignment), our heuristics cannot directly cover the faults in
suggested domains. However, analyzing the statements highlighted by our heuristics (e.g., semantics of
suspicious variables in the statements, the analysis approaches mentioned in [6]) can lead to the identification
of the faults. For instance, the missing predicate statement in program naur3 can be located by analyzing
the semantics of statements suggested by Heuristics in Table 4. If the faults of wrong initialization in
program gcd and transp are changed to missing initialization statements, we still can indirectly locate the
faults of missing initialization statements by analyzing the semantic of variables in suspicious statements
highlighted by our heuristics. Other approaches to fault localization based on test knowledge (e.g., error–
revealing mutations derived from mutation–based testing [34]) and dynamic program slices are currently
under development by the authors. These approaches further will help fault localization.

5 Related Work

In this section, a brief survey of typical fault localization techniques is presented.
Traditional debugging techniques such as dumping memory, scattering print statements, setting break-

points by users, and tracing program execution only provide utilities to examine a snapshot of program
execution. Users have to use their own strategies to do fault localization.

Shapiro [39] proposed an interactive fault diagnosis algorithm, the Divide–and–Query algorithm, for
debugging programs represented well by a computation tree (e.g., the logic programs written in Prolog). The
computation tree (the target program) is recursively searched until bugs are located and fixed. Renner [37]
applied this approach to locating faults in programs written in Pascal. With this method, users can only
point out procedures that contain bugs; other debugging tools are needed to debug the faulty procedures.
The similar result is obtained in [17].

The knowledge–based approach attempts to automate the debugging process by using techniques of
artificial intelligence and knowledge engineering. Knowledge about both the classified faults and the nature
of program behavior is usually required in this approach. Many prototype debugging systems have been
developed based on this approach since the early 1980s. [14, 38] However, knowledge about programs in
the real world is complicated. These prototype systems can only handle restricted fault classes and very
simple programs.

Program slicing proposed by Weiser [43, 44] is another approach to debugging. This method decomposes
a program by statically analyzing the data–flow and control–flow of the program — referred to as static
program slicing. Program dicing, proposed by Lyle and Weiser [27, 45], attempts to collect debugging
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information according to the correctness of suspicious variables involved in static program slices. Focus [28]
is a debugging tool based on program dicing to find the likely location of a fault. Because static program
slices contain many irrelevant statements that make fault localization inefficient, studying program slicing
based on dynamic cases to get the exact execution path is warranted. Dynamic Program Slicing [1, 3, 6, 25]
is a powerful facility for debugging and dependency analysis. Nevertheless, it has not been systematically
applied to fault localization. In Agrawal’s dissertation [6], he briefly alluded to the idea of combining
dynamic program slices and data slices for fault localization. Our heuristics are based on dynamic slices
that are collected by varying test cases, variables, and location of variables.

Current testing and debugging tools are separate. Even if they are presented in one tool, the two
functions are not well integrated to benefit each other. Osterweil [32] tried to integrate testing, analysis, and
debugging, but gave no solid conclusion about how to transform information between testing and debugging
to benefit each other. Clark and Richardson [11] were the first to suggest that certain test strategies (based
on the symbolic evaluation) and classified failure types could be used for debugging purposes. However,
only one example is given to describe their idea, and no further research has been conducted.

STAD (System for Testing and Debugging) [24] is the first tool to successfully integrate debugging with
testing. As mentioned above, its testing and debugging parts do not share much information except for
implementation purposes (e.g., they share the results of data flow analysis). The debugging part of STAD
will be invoked once a fault is detected during a testing session, and leads users to focus on the possible
erroneous part of the program rather than locate the fault precisely. PELAS (Program Error–Locating
Assistant System) [23] is an implementation of the debugging tool in STAD. Korel and Laski proposed
an algorithm based on hypothesis–and–test cycles and knowledge obtained from STAD to localize faults
interactively [26]. However, STAD and PELAS only supported a subset of Pascal, and limited program
errors are considered.

Collofello and Cousins [12] proposed many heuristics to locate suspicious statement blocks after testing.
A program is first partitioned into many decision–to–decision paths (DD–paths), which are straight–line
codes existing between two consecutive predicates of the program. Two test data sets are obtained after
testing: one detects the existence of faults and the other does not. Then, heuristics are employed to predict
possible DD–paths containing bugs based on the number of times that DD-paths are involved in those two
test data sets. Their ideas are related to some of the heuristic fault localization strategies proposed by us.
The deficiency of their method is that only execution paths (DD-paths), a special case of dynamic program
slicing, are examined. After reducing the search domain to a few statement blocks (DD-paths), no further
suggestion is provided for locating bugs.

Unlike the approaches proposed by Lyle–Weiser and Collofello–Cousins, which are only based on
suspicious variables and test cases respectively, our heuristics are developed by considering test cases,
variables, and location of variables together. We believe our methods will obtain more helpful information
and reduce the search domain effectively.

6 Concluding Remarks

With the support of Spyder and the proposed heuristics, a new debugging scenario can be described as
follows: (1) users find program failures by using the testing methodology provided by an integrated testing
tool; (2) the debugging tool interactively helps users reduce the search domain for faults by dynamic
instrumentation (e.g., dynamic program slicing and backtracking) and the information obtained from the
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testing phase; (3) the tool supports fault prediction strategies based on the reduced domain and test–based
information; and (4) users can retest the program to assure that the program failure has been prevented
after faults are located and fixed. The tool to support this new debugging scenario should be integrated
with a testing environment and can conduct program dependency analysis, monitor execution history for
backtracking, and provide fault prediction strategies based on information obtained from failure analysis
and fault classification. [34]

In this paper, a set of heuristics is proposed to confine the search domain for bugs to a small region.
The heuristics are based on dynamic program slices that are collected by varying test cases, variables, and
location of variables. Preliminary results of our studies indicate the effectiveness and feasibility of the
proposed heuristics. Although it is not guaranteed that faults can be found in the domains suggested by the
proposed heuristics, a confined small region containing faults or information leading to fault discovery is
provided for further analysis.

We continue to study the nature of program failures/faults as well as information obtained from testing
methodology to further develop the foundation of our heuristics and to develop other promising approaches.
We expect that our new debugging paradigm equipped with these heuristics will significantly reduce human
interaction time and aid in the debugging of complex software.
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Appendix A: Notations and Terminology

Notation and terminology used in our proposed heuristics are as follows:

Td : a set of error–revealing test cases that detect the existence of faults inP . jTdj represents the number
of test cases in Td.

Tu : a set of non–error–revealing test cases that do not detect the existence of faults inP . jTuj represents
the number of test cases in Tu.

Vd (Vu) : a set of variables that have incorrect (correct) value with respect to the given location l, test
case t, and P .

Ld (Lu) : a set of locations where the given variable v has incorrect (correct) value with respect to t and
P .

Dyn(P; v; l; t) : a dynamic slice contains statements of P actually affecting the value of v at location l

when P is executed against test case t.

Dyn(P; v; l; Tdi) : 1 � i � jTdj, Tdi 2 Td, a dynamic slice with respect to the given P , v, l, and
error–revealing test case Tdi .

Dyn(P; v; l; Tui) : 1 � i � jTuj, Tui 2 Tu, a dynamic slice with respect to the given P , v, l, and
non–error–revealing test case Tui .

Dyn(P; Vdj ; l; t) : 1 � j � jVdj, Vdj 2 Vd, a dynamic slice with respect to the givenP , l, t, and variable
Vdj with incorrect value.

Dyn(P; Vuj ; l; t) : 1 � j � jVuj, Vuj 2 Vu, a dynamic slice with respect to the given P , l, t, and
variable Vuj with correct value.

SjTdj
i=1 Dyn(P; v; l; Tdi) : union of the dynamic slices for different test case parameters with respect to all

error–revealing test cases.
SjTuj
i=1 Dyn(P; v; l; Tui) : union of the dynamic slices for different test case parameters with respect to all

non–error–revealing test cases.
TjTdj
i=1 Dyn(P; v; l; Tdi) : intersection of the dynamic slices for different test case parameters with respect

to all error–revealing test cases.
TjTuj
i=1 Dyn(P; v; l; Tui) : intersection of the dynamic slices for different test case parameters with respect

to all non–error–revealing test cases.

Inclusion frequency of a statement: number of dynamic slices containing the statement.

Influence frequency of a statement in Dyn(P; v; l; t) : number of times the statement was visited in
Dyn(P; v; l; t).

Some slightly different notations are also used in this study: Dyn(P; v; Ldk ; t), Dyn(P; v; Luk; t),SjVdj
j=1 Dyn(P; Vdj ; l; t),

SjVuj
j=1 Dyn(P; Vuj ; l; t),

TjVdj
j=1 Dyn(P; Vdj ; l; t), and

TjVuj
j=1 Dyn(P; Vuj ; l; t).

Their interpretations are similar to those presented above.
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Appendix B: Tested Programs

Source code of all tested programs (written in the C programming language) may be obtained from the
authors.

Program aveg first calculates the mean of a set of input integers. Then, percentages of the inputs above,
below, and equal to the mean (i.e., the number of inputs above, below, and equal to the mean divided by
the total number of inputs) are reported. Our version is directly translated from a Pascal version, and a
fault was accidentally introduced during the transformation. The fault is an incorrect logical expression
in an if–statement. If the working variable for the mean of the given integers has the value zero during
calculation, then the result is incorrect.

Geller’s calendar program calend [18], which was analyzed by Budd [10], tries to calculate the number
of days between two given days in the same year. A wrong logical operator (== instead of !=) is placed
in a compound logical expression of an if–statement. This fault causes errors in leap years.

The find program of Hoare [21] deals with an input integer array a with size n � 1 and an input array
index f , 1 � f � n. After its execution, all elements to the left of a[f ] are less than or equal to a[f ], and all
elements to the right of a[f ] are greater than or equal to a[f ]. The faulty version of find, called buggyfind,
has been extensively analyzed by SELECT [8], DeMillo–Liption–Sayward [13], and Frankl–Weiss [16].
In our experiment, find3 is the C version of buggyfind, which includes one missing statement fault and
two wrong variable references (in logical expressions). The two wrong variable references were placed in
find1 and find2 respectively.

Bradley’s gcd program [9], which was also analyzed by Budd [10], calculates the greatest common
divisor for elements in an input integer array a. In our experiment, a missing initialization fault of gcd was
changed to a wrong initialization with an erroneous constant.

Gerhart and Goodenough [19] analyzed an erroneous text formatting program (originally due to
Naur [31]). Minor modification of this program was made for our experiment. The specification of
the program is as follows:

Given a text consisting of words separated by BLANKs or by NL (New Line) characters,
convert it to a line–by–line form in accordance with the following rules: (1) line breaks must
be made only when the given text has a BLANK or NL; (2) each line is filled as far as possible,
as long as (3) no lines contain more than MAXPOS characters.

Program naur1 has a missing path fault (e.g., a simple logical expression in a compound logical expression
is missing). With this fault, a blank will appear before the first word on the first line except when the first
word has the exact length of MAXPOS characters. The form of the first line is, thus, incorrect as judged
by rule (2). Program naur2 also has a missing path fault (e.g., a simple logical expression in a compound
logical expression is missing). This fault causes the last word of an input text to be ignored unless the last
word is followed by a BLANK or NL. Program naur3 contains a missing predicate statement fault (e.g.,
an if–statement is missing). In this case, no provision is made to process successive line breaks (e.g., two
BLANKs, three NLs).

Program transp [29], which was adopted for experiment by Frankl and Weiss [16], generates the
transpose of a sparse matrix whose density does not exceed 66%. Two faults were identified in the original
FORTRAN program. [20] We translated the correct version to C and reintroduced one of the faults. The
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other fault happens because of features of the FORTRAN language and cannot be reproduced in C. The
fault present is a wrong initialization with an erroneous constant.

The last tested program, trityp, is a well–known experimental program.[36] It takes three input integers
as the length of three sides of a triangle, and decides the type of the triangle (scalene, isosceles, equilateral,
or illegal). The program contains three faulty statements with the same fault type, wrong logical operator
(� instead of >).
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